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Dear Colleagues,

What a year it has been! I hope everyone is doing
well and keeping healthy.

Over the course of its first year, the new Commit-
tee on Stochastic Programming (COSP) has created
the Stochastic Programming Society (SPS) Twitter
and LinkedIn accounts. Our aim was to increase
communication between our members. Little did we
know that these would be invaluable during the pan-
demic. In addition, last summer, we organized a
Virtual Seminar Series and, with the permission of
speakers, put the videos of the talks on our newly
established YouTube channel. I am happy to report
that, in addition to hundreds of live attendees, as
of this writing, our virtual seminar series have been
collectively viewed more than 5500 times on our so-
ciety’s YouTube channel.

Despite a challenging year, it has been a
great year of recognition for our community.
I would like to highlight several prestigious awards!
won by our esteemed colleagues. These awards recog-
nize contributions in almost every aspect in the field,
spanning theory, methodology, and real-world
impact. (The below is listed by time of award first,
and then alphabetically by last name).

!Not an exhaustive list. Apologies for any missed awards.



e Peyman Mohajerin Esfahani and Daniel
Kuhn were awarded the 2020 Frederick W.
Lanchester Prize by INFORMS for their influ-
ential work on distributionally robust optimiza-
tion using the Wasserstein metric. The Lanch-
ester prize is awarded for the best contribution
to operations research and the management sci-
ences published in English in the past five years.
I would like to highlight that the prize is not
awarded every year. You can find a summary of
their work in this newsletter.

e Jong-Shi Pang has been elected a member
of the National Academy of Engineering
(NAE) for the development of methods to ad-
vance the theory and applications of optimiza-
tion and operations research. Election to the
NAE is among the highest professional distinc-
tions accorded to an engineer, and academy
membership honors those who have made out-
standing contributions to their fields.

e Mario Veiga Ferraz Pereira, of the famed
SDDP method, has been elected an interna-
tional member of the National Academy
of Engineering for his contributions to the
methodology and implementation of multistage
stochastic optimization in hydroelectric schedul-
ing, energy planning, and policy.

e Nilay Noyan has been part of a team at
Amazon that has been awarded the 2021 IN-
FORMS Prize. The 2021 INFORMS prize was
awarded to Amazon, notably Amazon Trans-
portation Services, for its long-lasting institu-
tional achievement in integrating operations re-
search into organizational decision making.

e Three of the 2021 NSF CAREER Award
winners this year, Yongjia Song, Phebe
Vayanos, and Weijun Xie are stochastic pro-
grammers!

Please join me in congratulating the amazing ac-
complishments of our colleagues and the impact that
they are making! And please let me know about
any of our colleagues who have been missed and de-
serve special recognition on our Twitter and LinkedIn
feeds.
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Together with last year’s NAE and National
Academy of Sciences inductees, the preeminent
researchers Alexander Shapiro, Arkadi Ne-
mirovski and Jorge Nocedal, these awards evi-
dence the prominent role our community is playing
and the theoretical and practical impact stochastic
optimization is making.

I would like to wuse this opportunity to an-
nounce that the next International Confer-
ence on Stochastic Programming (ICSP) has
been postponed one year to 2023. Given the
domino effect the pandemic caused on the confer-
ence cycles—especially in light of ISMP-2021 being
postponed to 2022—a decision has been reached by
COSP to postpone ICSP for one year as well. Please
mark your calendars for July 24-28, 2023, where we
hope to see you in person in Davis, California, USA.

I hope you enjoy our second newsletter. As before,
we are highlighting young researchers, the Dupacovéa-
Prékopa best student paper prize finalists Junyi
Liu and Rui Peng Liu, and real-world impact
of stochastic programming in the electricity sector
(Alexandre Street and Davi Valladao) and for
the Covid-19 pandemic (Claudia Sagastizabal).
Don’t miss the perspective article by Stein Wal-
lace on how to apply stochastic programming in the
real world!

Last but not least, I am very grateful to all mem-
bers of the Committee on Stochastic Programming
for their many contributions.

I wish all of you healthy, happy, and creative days,
and I look forward to seeing you at the next meeting
held in person.

@c https://www.stoprog.org/
u https://twitter.com/stoprogsociety

m https://www.linkedin.com/groups/13799735/

o https://www.youtube.com/channel/UCMSOCh_
B-00tW6FsgQCUrHg
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In summer of 2020, one of the most extraordinary
summers in recent history, when many conferences
were cancelled or postponed due to the Covid-19 pan-
demic, the Stochastic Programming Society (SPS) [1]
held a virtual seminar series aptly titled “Decision
Making in an Uncertain World”. The series gave the
SPS community a way to learn about new research
in the area and connect with colleagues across con-
tinents and different time zones via their shared in-
terest in decision making under uncertainty.

The Virtual Seminar series were designed by the
governing board of the Stochastic Programming So-
ciety, also known as the “Committee on Stochastic
Programming” (COSP) 2], thanks to the suggestion
of a member of SPS, Vincent Leclére. The commit-
tee decided on the name of the seminar series, the
format of the seminars, and names of the speakers,
taking into account their provenance from all around
the World and research topics. The webinars took
place biweekly on Fridays 7-8 AM Pacific Time in
order to allow people at many different time zones
to attend the events, starting on May 29th, 2020 us-
ing Zoom platform, kindly supported by the Inte-
grated Systems Engineering Department of the Ohio
State University. The series consisted of seven talks
with presenters from various parts of the world: two
from Europe (Steffen Rebennack and Daniel Kuhn),
one from South America (Alejandro Jofré) and four
from the United States (Cynthia Rudin, Alexander
Shapiro, David Morton and Katya Scheinberg). The
seminar series covered a variety of topics including
theory, computations, and applications. It also in-
cluded topics that are relevant to the society but that

go beyond the traditional topics of interest to the so-
ciety such as machine learning. Topics covered by
the series included the following areas of research:

e Real-world Stochastic Programming Applica-
tions such as safe COVID-19 Reopening (David
Morton’s talk) and pricing in electricity mar-
kets and extension to markets with massive en-
try of renewable energies and distributed gen-
eration (Alejandro Jofré’s talk), Brazilian in-
terconnected power system problem (Alexander
Shapiro’s talk);

e Theory and Computations of Stochastic Pro-
gramming such as cut-sharing in Stochastic
Dual Dynamic Programming (Steffen Reben-
nak’s talk) and computational and theoretical
aspects of solving multistage stochastic pro-
grams (Alexander Shapiro’s talk);

o Distributionally Robust Optimization such as
moderate deviations theory and distributionally
robust optimization, which aim to learn from
correlated data (Daniel Kuhn’s talk);

e Related Fields such as interpretability ver-
sus explainability in Machine Learning (Chyn-
tia Rudin’s talk), and convergence analysis
of Stochastic Algorithms (Katya Scheinberg’s
talk).

Approach to decision making under uncertainty. . .

LINEAR
PROGRAMMING AND
EXTENSIONS

oThe final test of a theory is its capacity
to solve the problems which originated it.
—George B. Dantzig

Figure 1: David Morton’s answer to “What is your
approach to decision making under uncertainty?”
during his talk on Covid-19 Reopening.

Because the seminars covered a wide variety of top-
ics, COSP decided to begin each talk by asking the
speakers what their approach to decision making un-
der uncertainty was. Answers to this question by the



speakers (in alphabetical order of their last names)
provided stimulating “food for thought” to the com-
munity:

e Alejandro Jofré advocated “combining Stochas-
tic Optimization with interaction of different
agents” in a system where all agents are affected
by uncertainty. He emphasized taking into ac-
count the interaction of different agents, who
may have their own objectives.

e Daniel Kuhn, instead of supporting one ap-
proach, “praised many different approaches de-
pending on the problem at hand” and inspired
the community to “find new approaches” that
have not been used before.

e David Morton quoted one of the pioneers of
Stochastic Programming, George B. Dantzig,
“The final test of a theory is its capacity to solve
the problems which originated it” (see Figure
1), encouraging the SPS community to apply its
models and methods to solve real-world prob-
lems.

e Steffen Rebennack said that his approach to de-
cision making under uncertainty is to “incorpo-
rate all available information on the uncertainty
in an optimization model.”

e Cynthia Rudin promoted “decision making in
a human-aware way” (see Figure 2). In this
decision-making paradigm, machine learning
tools are decision aids to human decision mak-
ers, rather than providing the decisions them-
selves. This necessitates the machine learning
models to be interpretable by humans.

e Katya Scheinberg advised “putting [most of the]
eggs in a solid basket,” updating the common
advice “don’t put all your eggs in one basket.”
She related this updated advice to both real-life
decisions under uncertainty and the success of
the algorithms she has been analyzing.

e Alexander Shapiro mentioned that historically
many different communities worked on decision
making problems under uncertainty, including
Markov Decision Processes, Stochastic Optimal
Control, and Stochastic Programming. Even
though commonalities exist, these communities
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primarily worked independently with different
approaches. He encouraged the communities to
come together and learn from each other. He
also urged the creation of a library of decision-
making problems under uncertainty.

- s
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Figure 2: Cyntia Rudin’s talk on Interpretable Ma-
chine Learning.

With the permission of the presenters, COSP
posted recordings of the webinars on the new
Stochastic Programming Society YouTube channel
[3]. Since June 15, 2020, the talks collectively gener-
ated more than 5000 total views. This was a great
opportunity to learn about new research in the op-
timization under uncertainty area and connect with
colleagues from all over the world.

Acknowledgements. A version of this article ap-
peared in Newsletter 34 of the European Women in
Mathematics, devoted to the ongoing pandemic and
its consequences. We thank for the permission to
reprint it.
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The 2020 INFORMS Frederick W. Lanchester
Prize for the best contribution to operations research
and management science in the past five years was
awarded to Peyman Mohajerin Esfahani and Daniel
Kuhn at 2020 INFORMS Annual Meeting for the
paper “Data-driven distributionally robust optimiza-
tion wusing the Wasserstein metric: Performance
guarantees and tractable reformulations” published
in Mathematical Programming 171(1-2), 115-166,
2018. Below a summary of this paper.

Consider the stochastic optimization problem

7= i {BP b 6)) = [P0} )

where X C R" = C R™ and the loss function
h(z,&) depends both on the decision vector x and
the random vector &, which is governed by a prob-
ability distribution P supported on =. In practice
the distribution P may only be indirectly observable
through independent training samples 51, . ,5 N-

data-driven solution for problem (1) is a feasible de-
cision Ty constructed from the training data. We
also aim to construct a data-driven certificate jN,
that is, a safe estimate of the out-of-sample perfor-
mance EF [h(/x\N, f)] Specifically, we hope to ensure
that the inequality EF [h(iEN,g)] < jN holds with a
high probably, and we refer to this probability as the
reliability. Our ideal goal is to find a data-driven so-
lution 'y with the lowest possible out-of-sample per-
formance. This is impossible, however, because IP is
unknown, and the out-of-sample performance cannot

be computed. We thus pursue the more modest but
achievable goal to find a data-driven solution with a
low certificate and a high reliability.

A natural approach to generate data-driven solu-
tions T is to approximate IP with the discrete em-
pirical probability distribution I@N = NZZ 1 éz
This amounts to approximating the original stochas-
tic program (1) with the sample-average approxima-
tion (SAA) problem

Tern — inf PN~

Jsan = irelggE [h(x,€)] (2)
If the feasible set X is compact and the loss function
is uniformly continuous in x across all £ € =, then the
optimal value and the optimal solutions of the SAA
problem (2) converge almost surely to their counter-
parts in the true problem (1) as N tends to infinity
[2, Theorem 5.3]. The SAA problem has been con-
ceived primarily for situations where the distribution
P is known and additional samples can be acquired
cheaply via random number generation. However,
the optimal solutions of the SAA problem tend to
display a poor out-of-sample performance in situa-
tions where N is small and where the acquisition of
additional samples would be costly or impossible.

This prompts us to propose an alternative ap-
proach that explicitly accounts for our ignorance of
the true data-generating distribution P and that of-
fers attractive performance guarantees even when the
acquisition of additional samples from P is impos-
sible or expensive. Specifically, we design an am-
biguity set B.(IPx) containing all distributions that
could have generated the available training samples
with high confidence. This ambiguity set enables us
to define the data-driven decision Ty and the certifi-
cate J; ~ as the optimal value and an optimal solu-
tion of a distributionally robust optimization (DRO)
problem of the form

(3)

jN ;= inf

inf sup E® [h(m,f)].

QeB:(Py)

Following the pioneering work [3], we construct
IB%E(I@ ~) as a ball of radius € around the empirical
distribution Py with respect to the (first) Wasser-
stein distance. We will demonstrate that the opti-
mal value jN as well as any optimal solution Zpy
(if it exists) of the DRO problem (3) offer rigor-

ous finite sample and asymptotic consistency guar-



antees. Moreover, for many loss functions of practi-
cal interest, the DRO problem (3) is computationally
tractable and admits a reformulation reminiscent of

the SAA problem (2).

1. Statistical guarantees

The (first) Wasserstein distance between two proba-
bility distributions Q1 and Q2 on R™ is defined as

dw (Q1,Q2) = inf{/R2m [&1 — &2l TI(d&q, dE2) -

IT is a joint distribution of &; and & }
with marginals Q1 and Qs, respectively J’

where ||-|| represents an arbitrary norm on R™. In ad-
dition, we define the Wasserstein ambiguity set with
radius € > 0 as

B.(Py) = {QeME) : dw(Py.Q) <=}, (4)

where M (Z) is the set of all probability distributions
on =.

Omne may use |4, Theorem 2| to derive an a priori
estimate of the probability that the unknown data-
generating disﬁribution P falls within the Wasser-
stein ball B.(Py). Specifically, for any fixed g €
(0,1) the Wasserstein ball contains P with confidence
1 — B if its radius € exceeds

log(c1 1) 1/max{m,2}
(=)

(log(mﬁ’l) ) 1/e
C2N

if N > ls@f™)

g =

V) if N < loalcB™)
o

Note that the Wasserstein ball with radius ey (f)
can thus be viewed as a confidence region for IP. This
insight forms the basis for several statistical guaran-
tees for problem (3).

Theorem 1 (Finite sample guarantee). Suppose that
EP [exp([|¢]|*)] < A for some a > 1 and A > 0 and
that g € (0,1). If Iy and Tn represent the optimal
value and an optimizer of the DRO problem (3) with

Wasserstein ambiguity set B, (3)(Pn), then we have
for all N > 1 that
PYEF @y, 6] < v} 21-6. ()

Note that (5) guarantees that the certificate Jy
provides a (1 — )-upper confidence bound on the
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out-of-sample performance of the data-driven deci-
sion Z for all N > 1. While Theorems 1 and 2 pro-
vide strong theoretical justification for using Wasser-
stein ambiguity sets, in practice, the radius ey (f) is
rather conservative, and it is prudent to calibrate the
Wasserstein radius via data-driven techniques from
statistics. Examples include the hold-out method,
k-fold cross-validation or bootstrapping.

Theorem 2 (Asymptotic consistency). Suppose that
E¥ [exp([¢[|*)] < A for some a > 1 and A > 0
and that By € (0,1) satisfies Y N_1 By < oo and
limy oo en(By) = 0.1 Assume also that jN and
TN represent the optimal value and an optimizer of
the DRO problem (3) with Wasserstein ambiguity set

BaN(BN)(IPN)-

(i) If h(z, &) is upper semicontinuous in & and there
exists L > 0 with |h(x,&)| < L(1 4+ ||£]|) for all
x € X and £ € E, then P>®-almost surely we
have Jy | J* (converges from above) as N —
00, where J* is the optimal value of (1).

(ii) If the assumptions of assertion (i) hold, X is
closed, and h(x,§) is lower semicontinuous in x
for every £ € 2, then any accumulation point of
{ZNn}nen is P®-almost surely an optimal solu-

tion for (1).

One can show that all assumptions of Theorem 2
are necessary as well as sufficient, that is, relaxing
any of these conditions can invalidate the asymptotic
consistency result.

2. Tractable reformulation

We now prove that the inner worst-case expectation
problem in (3) over the Wasserstein ball (4) can be
reformulated as a finite convex program for many
loss functions h(z, §) of practical interest. For ease of
notation, in this section we suppress the dependence
on the decision variable z. Thus, we examine the
worst-case expectation problem

£(§) = max £, (&),

ES0()), i

sup
QeB-(Py)

(6)

involving a loss function that is defined as the point-
wise maximum of measurable component functions

LA possible choice is By = exp(—\/ﬁ),
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(&), k < K. The focus on loss functions repre-
sentable as pointwise maxima is non-restrictive un-
less we impose some structure on the component
functions f;. Our key tractability results are predi-
cated on the following convexity assumption.

Assumption 3 (Convexity). The set = C R™ is
convex and closed, and the negative component func-
tions —l are proper, convex, and lower semicontin-
wous for all k < K. In addition, £}, is not identically
equal to —oo on =, k < K.

Assumption 3 essentially stipulates that ¢(§) can
be written as a maximum of concave functions.
The worst-case expectation problem (6) constitutes
an infinite-dimensional optimization problem over
probability distributions and thus appears to be in-
tractable. However, one can demonstrate that (6)
can be re-expressed as a finite-dimensional convex
program by leveraging tools from robust optimiza-
tion.

Theorem 4 (Exact convex reduction). If Assump-
tion 8 holds, then for any € > 0 the worst-case ex-
pectation (6) equals the optimal value of the finite
convex program

N
min Ae+ % > s

i=1
A si € R, zi, v €R™,
[—lk)* (zik — vik) + o=(vig) —
|l zikll« < A,

s.t. Vi < N,Vk < K

<Zik7gi> <s;

where [—L|* denotes the conjugate of —{y, o= is the
support function of Z and || - ||« is the norm dual to

Stress test experiments are instrumental to assess
the quality of candidate decisions in stochastic opti-
mization. Meaningful stress tests require a good un-
derstanding of the extremal distributions from within
the Wasserstein ball that achieve the worst-case ex-
pectation (6) for various loss functions. We now
argue that such extremal distributions can be con-
structed systematically from the solution of a convex
program dual to the one described in Theorem 4.

Theorem 5 (Worst-case distributions). If Assump-
tion 8 holds, then for any € > 0 the worst-case ex-
pectation (6) coincides with the optimal value of the

finite convex program

N Z Z irli (& — o)

i=1k=
Qi € R+7

ak

max

s.t. qik e R™ Vi < N,

Vi < N,

Vk < K
Vk < K

Vi< N

Q

k=1
K
Z lginll < e

||Mz

If {O‘z‘*k’q:k}reN is an optimal solution of the above
problem, then the discrete probability distribution

| MK ~
* = N Z Z pler,  with & =& —

i=1 k=1 z‘k

qzk:

belongs to B.(Py) and attains the supremum of (6).

3. Applications and MOSEK soft-
ware package

The class of loss functions (6) fulfilling Assump-
tions 3 is rich and encompasses several interesting
special cases for which the convex reformulation in
Theorem 4 reduces to an explicit linear program.
This is the case when the 1-norm or the co-norm is
used in the definition of the Wasserstein metric and if
£(§) belongs to any of the following function classes:
(i) a pointwise maximum or minimum of affine func-
tions; (ii) the indicator function of a closed polytope
or the indicator function of the complement of an
open polytope; (iii) the optimal value of a parametric
linear program whose cost or right-hand side coeffi-
cients depend linearly on &. Tractable reformulations
of (3) are also available when (iv) the random vec-
tor £ can be viewed as a stochastic process and the
loss function is additively separable, and (v) the loss
function is convex in £ and may therefore not be rep-
resentable as a pointwise maximum of finitely many
concave functions as postulated by Assumption 3.
Recently, MOSEK 9.2 introduced parameteriza-
tion in their Fusion API (available for Python, C+ -+,
Java and .NET). As it is particularly well-suited
for (re-)solving large-scale optimization problems,
MOSEK have dedicated a jupyter notebook for the
Wasserstein DRO problems reformulated as in The-
orem 4, using their Fusion API for Python [5]. The



notebook also covers various data-driven techniques
to calibrate the Wasserstein radius including cross-
validation and bootstrapping. These methods are
exemplified in the context of mean-risk portfolio op-
timization.
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The ICSP XV
Dupacova-Prékopa Student

Paper Prize Finalists

Two-stage stochastic programming
with linearly bi-parameterized
quadratic recourse

Junyi Liu
University of Southern California (USA)
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A finalist of the 2019 Dupacovd-Prékopa Best Stu-
dent Paper Prize was Junyi Liu at ICSP XV for
the paper “Two-stage stochastic programming with
linearly bi-parameterized quadratic recourse”, coau-
thored with Ying Cui, Jong-Shi Pang, and her ad-
viser Suvrajeet Sen, published in SIAM Journal on
Optimization, 30(3):2530-2558, 2020. Below a sum-
mary of this paper.

The two-stage stochastic program (SP) is one of
the standard SP models in which the first-stage de-
cision is made prior to observing the uncertainty, and
the second-stage recourse decision is undertaken so
as to adapt to the observation in an optimal manner.
To date, this class of problems has an overwhelm-
ing feature in the literature [1], that is the cost vec-
tor in the objective of the second stage program is
independent of the first-stage decision. Our paper
focuses on an extended two-stage SP with linearly
bi-parameterized recourse as follows:

(@) 2 p(a) + Be[u(e,8)],

minimize
re X CR™M

(1)

where the recourse function ¥ (x,§) is the optimal
objective value of the quadratic program:

o) £ min [f(€)+GE)2]"y+ 5y Qy
st.  A(&)x+ Dy > b(&),y € R,
) 2)
In this setting, £ is a random vector defined on a
probability space (£2,.4,P), and £ without the tilde
refers to a realization of the random variable. Then
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f(&), G(&), A(§), and b(&) are respectively the real-
izations of these functions composed with the ran-
dom variable §~ We have the blanket assumption
that ¢(e) is a convex function on a compact con-
vex set X; () is a symmetric positive semidefinite
matrix; and the recourse function (z,§) satisfies
the relatively complete recourse property. This lin-
early bi-parameterized recourse has numerous appli-
cations, such as two-stage shipment planning with
pricing [2|, two-stage power systems planning with
renewable energy, and two-stage SP with linear com-
plementarity constraint.

In general, the linearly bi-parameterized recourse
P(x, &) (2) is a nonconvex function. The loss of con-
vexity is possibly the main reason that the state-
of-the-art of computational two-stage SP remained
largely under the restricted setting that G(£) = 0 for
almost every £ so that the recourse function is convex
and piecewise affine. Nevertheless, if one is willing to
trade global optimality for model fidelity, then one
may be interested in obtaining a “stationary" solu-
tion to the extended modeling paradigm of two-stage
SP (1). Specifically, in this paper, we are motivated
to answer the following question: what type of so-
lutions can be obtained by numerical algorithms for
this class of two-stage SP problems (1)7

It is shown in [3] that the linearly bi-parameterized
recourse (e,§) is a difference-of-convex (dc) func-
tion, thus the combined objective function ((z) is
also dc. In principle, the difference-of-convex algo-
rithm [4] could be applied to solve the two-stage SP.
Nevertheless, the dc decomposition of the recourse
function given in [3| is only of conceptual value and
practically not suitable for computation. So in the
absence of the explicit dc decomposition, it is not
clear what kind of limit one can expect of an iterative
method for such two-stage SP problems. Further-
more, while the sampling methods have been stud-
ied extensively for convex SPs [1], when applied to
nonsmooth and nonconvex SPs, the sampling tech-
nique should be combined with some convexifica-
tion of the original problem with appropriate sample
size control. Given the above background and chal-
lenges, we highlight two major contributions of our
paper regarding to the two-stage SP with linearly
bi-parameterized recourse:

1. We identify an implicit convex-concave property

(1]

2]

3l

4]

of the linearly bi-parameterized recourse func-
tion v (z,&) based on which the concept of a
generalized critical point is defined. We present
the relation of generalized critical points to the
Clarke stationary points and directional station-
ary points. Furthermore, we derive the sufficient
condition for such a point to be a directional sta-
tionary point based on the directional derivative
formula in [5], which highlights the role of mul-
tipliers of the second-stage constraints.

. By adding a Tikhonov regularization term to the

second-stage program (2), the resulted regular-
ized recourse function has an explicit dc decom-
position. Hence, by combining sequential reg-
ularization, convexification, and sampling, we
propose an algorithm, called the RCS algorithm,
for solving the stochastic program (1). With
appropriate control of regularization parameters
and sample sizes in the RCS algorithm, we prove
that every accumulation point of the sequence
produced by the algorithm is a generalized crit-
ical point almost surely. A key technical step
in the convergence analysis is the derivation of
uniform bounds for various function values, sub-
gradients, gradients, and error estimates under
some matrix-theoretic assumptions. We also
present numerical experiments on the joint pro-
duction, pricing, and shipment planning prob-
lem to test the effectiveness of the RCS algo-
rithm.
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The ICSP XV
Dupacova-Prékopa Student

Paper Prize Finalists

On Stochastic Programs without
Relatively Complete Recourse

Rui Peng Liu
Georgia Institute of Technology (USA)
rayliu@gatech.edu

A finalist of the 2019 Dupacovd-Prékopa Best Stu-
dent Paper Prize was Rui Peng Liu at ICSP XV
for the paper “On feasibility of sample average ap-
proximation solutions”, published in SIAM Journal
on Optimization, 30(3), 2026-2052, 2020. Below a
summary of this paper.

We consider general stochastic programs of the
form

inf F(x):=E .

bt Fla) = E[f(a,¢)

(1)

Here, f(x,-) is an extended real-valued integrable
function for every decision vector x € X, and the
expectation is taken with respect to the random vec-
tor £&. An important class of stochastic programs is
the two stage problems, in which the objective func-
tion is given by a second stage problem, i.e.,

f(z,&) = inf

el 9¢(y)

for real-valued functions g¢. A two stage problem is
said to have relatively complete recourse (RCR) if,
for every x € X and almost every outcome of &, the
set Y(x, &) is nonempty, or equivalently,

f(z,:) <ocoas. Vredlk.

(2)
In general, we say a stochastic program has RCR if
condition (2) holds.

The RCR property makes life easy. For two stage
problems, this means that, in almost every scenario,
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the second stage problem has a solution for whatever
decision z € X implemented in the first stage. Nev-
ertheless, the RCR property does not always hold
in practice. For example, when deciding the size of
a reservoir, it could happen that certain size is too
small to hold enough water storage to buffer poten-
tial drought impact.

In [2], we studied the sample average approxima-
tion (SAA) approach to solve stochastic programs
without RCR. Given g[N] = ({1,.. . ;fN); an i.i.d.
random sample of ¢ of size N, the SAA approach
solves the following sample approximation of (1):

N

1
inf ;f(w,&)'

(3)

For every outcome of §y], we denote z({y)) to be
an arbitrary feasible solution of (3) and x*({n) to
be an arbitrary optimal solution of (3).

For stochastic programs without RCR, it is impor-
tant to understand how feasible a given solution z is,
which is quantified by

d(x) = P(f(x,&) < 0).

Generally speaking, solutions z with higher d(x) are
preferred. For the class of problems considered be-
low, we provided in [2] upper bounds on the proba-
bility

PN (d(z(én)) <1 —a), ac(0,1]. (4)

In plain words, (4) is the portion of outcomes of &|y;
for which the solutions z (&) have low feasibility.

We first consider the chain-constrained domain.
Define

dom fe ={x: f(z,§) < oo}.

We say a stochastic program has chain-constrained
domain of order m if there exists m functions cy(x)
and m random variables /i (&) such that

dom fr = {x: cp(x) < €(E), V1 < k <m}.

For example, a two stage problem has chain-
constrained domain when

V(&) ={y>0: Wy+Tx=nh()},

where W and T are deterministic matrices and h(&)
is a random variable. For stochastic programs with
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chain-constrained domain of order m, we showed

(27) ak(1— a)N-F,

We next consider convex stochastic programs,
where X is a closed convex set and f is convex in
x for every outcome of £. If the set of optimal solu-
tions X* of (1) is compact and lives in the interior
of the effective domain of F, we showed

m—1

PY(d(a(én) <1-a) < Y.

k=0

PN (d(z*(¢n)) < 1) <1-py),

where pY is the probability of an uniform approxima-
tion of F by N=1Y f(z,&;) on a compact set around
X*. Furthermore, for a convex stochastic program
with chain-constrained domain, we showed

[J]-1

PY(d(z"(én)) < 1-a) < )

k=0

where, roughly speaking, J is the set of constraints
¢ that are active at AX™*.
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Advice for applying SP in the
real world

Stein W. Wallace
NHH Norwegian School of Economics, Bergen (NORWAY)
Stein.Wallace@nhh.no

Impact Summary: The purpose of this short
note is to challenge those of you who consider using
stochastic programmaing out there in the real world.
By that I mean, make genuine decisions using real
money, not just write a paper motivated by a real
case. There are no correct ways to do this, but there
are some pitfalls and some difficulties that need to
be faced that are a bit different from when we write

(k)ak(l_a)N—k+(1_in)7papers on applications, but nobody really cares about

the results. I will focus on the stochastics side of the
problem, as most questions of algebraic descriptions
are shared with deterministic modeling.

Background

How do you know that the solution you have found
isn’t off by, say 5%, compared to the actual best
available solution for a company? In applied OR
papers this question is hardly ever asked, but for a
company, wasting 5% of the profit is a big issue if the
reason is simply ‘us’. My claim is that unless some-
body is actually putting real money on your model,
nobody is ever going to discover this weakness of the
model, certainly not reviewers, editors or readers. I
cannot answer the question either, but I can give you
some thoughts on the way if you are planning to ac-
tually sell your model and its solutions. None of this
is very deep, but added up it may matter.

Optimality

Though finding optimal solutions to a model is cute
— and there is no reason to avoid it — there is also
no major reason to require it. The reasons are obvi-
ous: The model is wrong by definition, relative to the
problem at hand, and many of the parameters you
put in are not fully known (but you wisely did not in-
clude them as random variables), either because they
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are about the future, or because it is too costly to fig-
ure out the real values. And even if, for some strange
reason, the model was right and all parameters you
included really were known, there is the problem of
the scenarios — my main issue in this short note
— as they normally just approximate the underlying
distribution. So don’t spend too much time on wor-
rying about optimal solutions to an incorrect model.
In addition, most, if not all, real models are so large
that optimality is numerically impossible — so why
worry?

The people side

There is a lot of useful information for us in the work
on human judgment in decision-making, represented
for example by the Nobel Prize in Economic Sciences
to Daniel Kahneman in 2002, see [2|. I advise all
stochastic programmers to read up on that material.
Here I will just mention two aspects. They might
seem obvious, but they are not.

e Specialists almost always think they know more
than they do. An important effect is that if you
depend on expert judgments in estimating the
distribution of your random variables (like the
probability of machine breakdowns and their du-
ration for a new machine with no history), they
will under estimate the probability of a break-
down as well as the means and variances of their
durations. Hence, uncertainty will seem less se-
rious than it is, and investments in flexibility
will be too low. Empirical research indicates
that this is happening all the time, and it is not
a result of people showing off.

e The world is full of misconceptions about un-
certain phenomena. We all know most of them:
Regression to the mean, the gambler’s fallacy,
the IQ of hindsight (it is hard to learn from out-
comes affected by uncertainty), the law of small
numbers, anchoring ...
Knowing this literature is very useful when dis-
cussing models or results with problem owners
as it can help us understand what might seem
as strange arguments and misconceptions. And
it is important when trying to learn from out-
comes affected by uncertainty:.

to mention but a few.
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Random demand

This is a very specific comment, but I see so many
people struggling with it that it is worth mentioning.
We often see references to ‘demand data’. But that
is rarely what they are, they are sales data. Demand
data are very hard to come by. It is extremely un-
likely that you have data on the demand for white
T-shirts or the demand for bicycle rentals between a
pair of rental stations. What you have is data for how
many white T-shirts were sold and how many bicy-
cles that were picked up at one station and delivered
at another. You do not know how many rentals fell
through as a rental station was empty or how many
bicycles were handed back at the wrong station be-
cause the first-choice was full. In an academic paper
this seems to be acceptable. But think carefully if
you produce a method for really redistributing bicy-
cles among stations, using sales as a substitute for
demand. You might be producing a system that pre-
serves the old sales pattern rather than facilitates the
actual demand.

Scenarios

So let us turn to the main issue of applied stochastic
programming, namely how to think about the un-
certainty when we really care about the end results.
Let me first point out that while it is fairly easy to
find out how many scenarios you can handle in your
optimization model (though it does depend a bit on
the scenarios themselves), it is not so easy to work
out how many scenarios you need to achieve a cer-
tain quality in the solution. In particular remember
that the sentence ‘I need s scenarios to achieve a
certain quality’ makes no sense, while ‘I need s sce-
narios using scenario generation method X to achieve
a certain quality’ does. In other words, the number
of scenarios depends both on the problem itself and
how you create scenarios. For this reason I prefer to
see scenario generation as part of modeling, not as
part of data handling (but not everybody agrees).
The first step will always be to model the uncer-
tainty as well as you can, using data, qualitative un-
derstanding and experts. It is beyond this note to
say how, but I would like to make one important
point: Try to model the uncertainty as well as you
possibly can without regards for how you will even-
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tually make scenarios. Do not lose quality in your
description because you keep thinking about how to
create scenarios from the description, and certainly
do not model scenarios directly. This overall descrip-
tion of uncertainty will then be the basis for scenario
generation (possibly using several different methods)
but also for your out-of-sample testing, or possibly
the use of a simulation model, to test the quality of
your decisions.

Sampling is always tempting, but if you have a
big model and care about quality, please be careful.
Most likely you will need so may scenarios to achieve
a necessary quality of the solution, that you would
be numerically out of business. Cute academic mod-
els is one thing, the real world with real money a
different story. That said, if you use some of the
solid sampling based methods correctly, such as for
example Stochastic Decomposition or Sample Aver-
age Approximation, please do so if they deliver what
you need. But for reasonably large problems you are
going to face some real numerical challenges. Apart
from size, sampling from complicated mixed distri-
butions, with some variables discrete (particularly
binary), some continuous, some based on qualitative
understanding, some on historical data, some depen-
dent, some not, is not as easy as it might sound. In
fact, it is, numerically speaking, close to impossible
in most such complicated or very large cases.

Whatever you do, unless you use a scenario gener-
ation method with a built-in quality check, you need
to do your best to check the quality of your results.
In my view, what to do first is to check for in-sample
stability. Details for this and other aspects of quality
assurance, can be found in [3|. The main idea here is
to make sure that if you run the scenario generation
procedure several times, and then solve your model
for each of the resulting scenario trees, you should
get approximately the same objective function value
each time. If you don’t, it seems your scenario gen-
eration method does not deliver meaningful results
with the given number of scenarios. This is where
you would normally discover if sampling works for
you; How many scenarios do you need to obtain sta-
ble results? Beyond what you can handle? This
should be followed by out-of-sample testing or sim-
ulation. This is where your model of uncertainty
comes back to you and defines ‘truth’.

If you have a history, and thereby an empirical
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distribution, you might feel safe to sample from it.
Literature is full of papers doing exactly that, and it
seems to be accepted. But if you are out there with
real paople and real money, at least stop for a mo-
ment and think: Is the empirical distribution really
good enough? Do the data come from an underly-
ing distribution? Is there any reason to assume that
the empirical distribution can be seen as a sample
from the distribution you have in mind? Or do the
observations come from a process that is all over the
place? Maybe your statistics background can help
you here, I am simply pointing out that just assum-
ing your data points constitute a valid distribution
is very bold.

This is part of a problem that is mostly skipped
in academic papers. Unless we are modeling betting
in a Casino, there is no ‘true distribution’; at least
not one you can get hold of. So a true out-of-sample
test cannot be made relative to the real world. But
by being careful when you estimate uncertainty, at
least you have a basis for saying that the problem you
solved is (almost) as if you had used all you know
about the distribution, and not just the scenarios.
And at this point defining the empirical distribution
as the truth can be very risky.

Scenario generation methods that cover high di-
mensions, dependencies, and difficult distributions
(like binary) are emerging. May I for example refer
to [1] where a problem with over 25,000 dependent
random variables is solved with reasonable accuracy
or [4] which makes an attempt to handle complicated
random variables, in particular binary ones, possibly
combined with continuous. Such a combination will
kill almost all existing scenario generation methods.
I mention these mostly to encourage more work on
scenarios in real settings, and not to tell exactly how
to go about generating them.
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Real-World Impact of
Stochastic Programming:
The Electricity Sector Case
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Impact Summary: Stochastic  programming
emerged as a response to the need for more re-
alistic and practical solutions when dealing with
decision-making under uncertainty. Power system
operators, planners, and agents worldwide need
to coordinate and plan reliable decisions under a
myriad of uncertainties every day. If consumers
pay hundreds of billions of dollars every year to
support such decisions, how much is left on the table
when ignoring the benefits of stochastic programming
decisions?  And what are the big challenges this
sector still offers to our community? We hope we
can produce at least a differential impact on your
research interest with this article. To that end, we
bring a few examples of the tremendous real-world
impacts our community has already produced to elec-
trical power sectors worldwide and raise awareness
of relevant challenges that still need to be addressed.

Acknowledgement and disclaimer — We are honored
and greatly appreciated the invitation to write this
article. We thank Francesca Maggioni and Giizin
Bayraksan, and the Committee on Stochastic Pro-
gramming (COSP), for such a great opportunity. In
return, we tried to provide the SP community the
distillate of many discussions and ideas about how
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stochastic programming (SP), observing the speci-
ficity of each application, can be impactful in real
life. We focus on the specific case of the electricity
sector, where billions of dollars are driven by primal
and dual solutions of optimization problems every
year. That said, an important disclaimer: this is an
opinion article, and so we do not intend to make a
literature review on covered topics. It is also worth
mentioning that we intentionally use self-citations
with the sole purpose of bringing further scientifi-
cally grounded material to better support our ideas.
Thus, we apologize in advance for all notable related
works not cited in the subsequent paragraphs.

The need for real-world impact is the underlying
and impelling force behind most applied and theo-
retical developments in the optimization field. The
necessity of improving life quality, making things bet-
ter, or even survive creates the demand for new meth-
ods, models, and theories supporting decisions that
will produce the actions for change. Thus, one of
the first responses to this need for thrive is the art
of mathematical modeling through abstract think-
ing. As described in [1], the modeling process was
significantly systematized with the definition of tra-
ditional structures we all use today to define an opti-
mization problem: objective function, variables, and
constraints. Such systematization was key to con-
centrate efforts allowing the development of power-
ful and effective methods to solve entire classes of
problems instead of relying on specialized methods
for specific applications.

Frequently, when the strive for new impactful
models and methods holds a sort of equilibrium be-
tween generality, encompassing a relatively large set
of problems worth solving, and similarity, allowing
the scientific community to rely on a common nota-
tion (or language), a new area emerges. This hap-
pened in the optimization field with the SP area. Not
so long ago, when linear programming was starting
to impact industry applications and change the eco-
nomic thinking, decision-making under uncertainty
applications started to appear (see [1]). Thus, SP
emerged as a branch of the optimization field (or
mathematical programming) concerned with bring-
ing this relevant piece of realism (i.e., uncertainty)
into play. In this matter, SP added a few key new
structures to the modeling framework such as 1) the
concept of first-stage (here-and-now) decisions and
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recourse (wait-and-see) actions, 2) the explicit uncer-
tainty characterization through probability distribu-
tions, uncertainty or ambiguity sets, and 3) the rep-
resentation of the decision maker’s risk preference.

Among many impactful insights, a distinctive and
powerful message successfully conveyed by the SP
community was the following: under certain assump-
tions, there is an extra value in the stochastic solu-
tion (VSS) (see [2]) that might not be obtained from
any deterministic model. There are relevant cases in
which the SP models find optimal solutions that can
not be found by any deterministic version of the for-
mulation, regardless the scenario used for its uncer-
tain parameters. As we further depict in the sequel,
this and other relevant findings produced profound
impacts in real-world applications such as in energy,
finance, logistics, just to mention a few.

The electric power sector constitutes one of the
examples where SP produced relevant real-world im-
pacts. It is one of the largest and most complex dis-
tributed machines ever built. It must be operated,
maintained, and updated so that all consumers have
reliable and continuous access to electricity supply
almost everywhere. Such high quality of service is
expected to happen despite the weather, economic
situation, market frictions, equipment failures, nat-
ural hazards, fuel price fluctuations, and natural re-
sources availability. According to the U.S. Energy In-
formation Administration (EIA) Annual Energy Re-
view, the U.S. total retail sales to final consumers
in 2019 reached 3,811 TWh at an average price of
105.40 USD/MWh. This means that final consumers
paid 401.6 billion dollars to supply the whole electric-
ity machinery. The same number surpasses 2 trillion
dollars for the countries in the Organisation of Eco-
nomic Co-operation and Development (OECD). A
relevant part of the costs mentioned above, roughly
around 58%!, goes to the generators to cover their
investment and operating costs. Another lower, yet
relevant, parcel of 13% covers transmission costs.
Because both planning and operation activities are
largely driven by optimization models since early
90’s, and at the same time these segments are sig-
nificantly challenged by uncertainties, SP has been
gaining more and more attention in the last 30 years.

For instance, the VSS in the challenging task of
planning the transmission system expansion has been

1Shares vary according to the system characteristics.
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proven to be quite relevant [3|: “We conclude that
the cost of ignoring uncertainty (the cost of using
naive deterministic planning methods relative to ex-
plicitly modeling uncertainty) is of the same order of
magnitude as the cost of first-stage transmission in-
vestments." On the operational side, SP models have
been playing a crucial role in addressing the problem
of mid- and long-term water resource management
in hydrothermal power systems since the seminal
work of Mario V. Pereira [4]. In 2000, the Stochas-
tic Dual Dynamic Programming (SDDP) methodol-
ogy was adopted as the official model in Brazil. It
was used to centrally define a week-ahead generation
plan and electricity spot prices based on the marginal
operation cost directly derived from dual variables.
Therefore, this academic work and its subsequent ad-
vances directly impacted the Brazilian power system
agents and the whole chain of electric-intensive in-
dustries and final consumers. Since that time, the
whole Brazilian economy started to experience elec-
tricity prices influenced by the opportunity cost of an
inter-temporal constrained natural resource (water)
calculated by a multistage stochastic linear model.
The use of SDDP-based techniques to either mini-
mize total system costs in centrally coordinated sys-
tems or to maximize revenues in bid-based markets
was largely followed by many countries relying on
high shares of hydro resources such as Chile, Peru,
Colombia, and Norway, just to mention a few.

The benefits brought by SP to the electrical power
sector notwithstanding, many challenges still need to
be addressed to unlock a substantial part of the SP
potential. Some of them are: 1) the modeling risk
associated with time-inconsistent policies generated
by modeling simplifications in multistage models, 2)
transparency, reproducibility, and compliance issues
associated with sample-dependent decisions, and 3)
the connections with other areas such as machine
learning that aims to harness the power of a more-
and-more data-rich world.

The potentially negative impact of a time-
inconsistent policy in real-world applications is real,
tangible, and it really should be taken seriously. We
know that multistage models better represent the re-
ality of dynamically chained decision (under uncer-
tainty) processes over time. Such improved represen-
tation is done by incorporating the dynamics of fu-
ture planned decisions into the model. Thus, in the-
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ory (and ceteris paribus), this framework better char-
acterizes future opportunity costs of key scarce re-
sources, such as water, and time-coupling constraints
through a well-approximated recourse function. As a
consequence, the first-stage decisions are improved in
terms of the entire time horizon. In practice, how-
ever, the decision maker must solve a temporal se-
quence of multistage problems to actually implement
only first-stage decisions. Hence, for each problem,
the first-stage solution embeds a look-ahead assess-
ment of future flexibilities and system constraints
translated by future planning decisions.

Roughly speaking, a policy is time consistent when
the planning decisions, optimal for today’s problem,
are also optimal as first-stage decisions of future
problems (in [5] a more precise and complete defi-
nition is given). The most popular and widely ex-
plored source of time inconsistency in the related
literature is a bad choice of the risk measure [5].
However, another relevant source of inconsistency
arises from modeling simplifications due to the in-
tractability of more realistic and complex multistage
models. The latter dramatically manifests in real-
world hydrothermal operation planning problems,
in which the first-stage problem (addressing imple-
mentable decisions) is full of details, while the plan-
ning part of the multistage model (recourse problem )
is widely simplified. Relevant examples for the pre-
viously mentioned simplifications are: network con-
straints, hydro reservoir aggregation, the information
level available for the decision maker in each stage,
hourly constraints such as ramping limits and unit
commitment constraints, and short-term uncertain-
ties of intermittent renewables and equipment fail-
ures. Although relevant efforts have been devoted to
reduce these modeling gaps, there is still much work
to be done.

In this context, the inconsistency due to mod-
eling simplifications in the planning part of multi-
stage problems can be understood as a modeling risk
caused by an opportunity-cost assessment bias, and
can be measured by the time inconsistency gap [6].
Not surprisingly, the aforementioned bias is amplified
by the usual approach of relaxing constraints (opti-
mistic view) when simplifying the planning part of
the multistage model. Practical consequences of re-
lying on such simplifications are high over-costs and
relevant market distortions such as price spikes. We
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refer to the interested reader to |7] for further de-
tails. Although one cannot fully address this source
of inconsistency, as reality will always manifest itself
more complex than any model, the pursuit for new
approaches aiming to reduce the detrimental effects
of optimistic recourse functions is key to unlock the
potential benefits of multistage SP in real-world ap-
plications.

Another important practical challenge is related
to sampling-based methodologies, by far the domi-
nant approach used to solve SP problems. For in-
stance, despite of the well-known potential benefits
of stochastic unit commitment (SUC) models (see
[8]) for day-ahead markets?, official short-term mod-
els still rely on deterministic approaches worldwide.
This happens mainly because SUC models are gen-
erally addressed through their Sample Average Ap-
proximation (SAA) counterparts, which are scenario-
dependent large-scale mixed integer linear problems
(MILP). Hence, due to the computational burden as-
sociated with such problems, SUC models rely on few
scenarios, leading to sample-dependent (or random)
solutions. Such models play a central role in electric-
ity markets, defining market prices and the supply
and demand equilibrium at each point of the net-
work. Therefore, market operators are overwhelmed
by agents inquiring for optimality guarantees and
reproducibility, hungry for any subjectivity justify-
ing solutions in which their revenues are better off.
Thus, differently from what would be acceptable for
an individual agent within the extent of his own pri-
vate decision-making perspective, there is no room
for a SUC model delivering, e.g., sample-dependent
prices. As a consequence, ad hoc biased forecasts and
more sophisticated application-driven learning meth-
ods are being proposed by system operators. We
refer to [9] for more details highlighting the Califor-
nian System Operator’s case. Notwithstanding, this
should sound like ringing bells calling for new ideas
on exact methods observing industry’s needs.

Finally, classical SAA models intrinsically rely
on multivariate time-series/machine-learning mod-
els describing complex spatial-temporal dynamics

2A unit commitment model defines the on and off statuses
of generating units, as well as their planned generation and
(up and down) reserve commitments for the next 24 hours.
It constitutes a typical step in power system operation proce-
dures.
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through Monte Carlo simulations to achieve good
performances in real-world applications. Further-
more, it requires a delicate orchestration of two ar-
eas, statistics and optimization, generally not en-
tirely dominated in the level needed to make things
work properly by the same set of researchers. Thus,
the pursuit of more realistic data-driven approaches
[10] and contextual models [11] capable of capturing
relevant information from a more and more data-rich
world has become a hot topic and has a great poten-
tial of impact in real-world applications.
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Real World Impact of
Stochastic Programming for
COVID-19

Claudia Sagastizabal
IMECC-Unicamp & CEMEAI (BRAZIL)

sagastiz@impa.br

Coronavirus has been an uninvited guest in our
lives for more than a year now. After a last trip
to Trondheim for a mini-course (sigh), home office
became my new normal from March 2020 on. The
new normal also brought a different style for broad-
casting news in the media. We are informed on the
pandemic using plots and terms that were before con-
sidered coded language for geeks: moving averages,
exponential growth, flattening the curve, the ubiqui-
tous, yet elusive, effective reproduction rate.

Being a problem solver by nature, I became in-
creasingly frustrated, overwhelmed by the avalanche
of semi-technical information. I knew nothing about
epidemiology, but wondered if the optimization could
contribute to the fight against COVID-19. In May
2020 I reached out to my colleagues in CEMEAI,
the Brazilian center for mathematical sciences ap-
plied to industry. About 15 years ago, Sao Paulo
state started funding a few excellence centers to ex-
plore the frontiers of knowledge. CEMEATI’s mission
is to develop new transformative mathematical tech-
niques, with an emphasis on their industrial applica-
tions.
the center, proposing to think how to estimate the
number of lives that are spared when the population
adheres to social distancing measures. In pandemic
times, having a positive indicator instead of report-
ing mortality numbers sounded like a more effective
message to convey.

I wrote an email to the list of researchers in
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I'sent my email without much hope, a modern cast-
away shipwrecked by the pandemic, throwing a bot-
tle with a message into the virtual sea of internet. I
was surprised by the replies. I found out that CE-
MEATI had stepped in with force to respond to the
COVID-19 pandemics. Less than two months had
passed since the coronavirus outbreak in Brazil and
several solutions, with powerful evocative names, had
already been proposed on different fronts [1]. Info
Tracker, to collect and analyze coronavirus data at
municipal levels; the expert system Safe Stock to
forecast PPE use and prevent a depletion of stock
in hospitals; and an optimization platform to plan
intermittent confinement, Robot Dance.

Robot Dance is an open-source software created
by L. Gustavo Nonato, Tiago Pereira and Paulo J.
S. Silva to support the decision making on COVID-
19 public policies [4]. In Brazil many of such ac-
tions are taken at state levels, without federal co-
ordination. Robot Dance provides regional govern-
ments with technical assistance on the pandemic (as
in many places, unfortunately, technical recommen-
dations are sometimes set aside for political reasons).

Partly based on Robot Dance, in the project [6] we
put in place Vidas Salvas, a “calculator” of lives that
are spared every minute in different regions of Brazil,
thanks to social distancing policies. The repercus-
sion of our relatively simple web-page was quite im-
pressive, it was even mentioned on the national TV
It is interesting how a shift in perspective,
moving the indicator from the topic of deaths to the
preservation of lives, suceeded in attracting attention
and, hopefully, encourage people to maintain social
isolation.

news.

Vidas Salvas was the beginning of a fruitful collab-
oration with CEMEALI colleagues. The optimization
model behind Robot Dance is quite sophisticated, it
combines elements from various areas, and Stochas-
tic Programming is one of them. The computational
tool assesses and forecasts the consequences of in-
terventions when there is a disease like COVID-19,
whose spread depends on the circulation of people
living in a region. The problem is modeled in JuMP
and solved with the nonlinear optimization solver
Ipopt.

As we all know, formulating a mathematical opti-
mization problem requires defining an objective func-
tion and the feasible set. We shall comment on the

Stochastic Programming Society Newsletter

former afterwards. Regarding the latter, a set of epi-
demiological constraints describes different stages of
the disease, considering a given population in per-
centual terms. This is represented mathematically
by variables called “compartments” in epidemiology.
A dynamical system describes the evolution in time
of the percentages of individuals that are Susceptible
of getting the disease, of those who have been Ex-
posed to the coronavirus, of the Infected ones, and
of those who already had COVID-19. The initial
letter of each compartment, SEIR, gives the name to
the model in question (R stands for “recovered”, even
though the compartment includes deceased individu-
als, it appears that the model was originally proposed
for non-lethal diseases). Those four compartments
are state variables of the optimization problem, and a
finite-difference discretization of the ordinary differ-
ential equations in the dynamical system constrains
the corresponding trajectories, day by day, over an
horizon of at least one year. For those readers fa-
miliar with hydro-power management in energy op-
timization, compartments are comparable to reser-
voir volumes, and the discretized dynamical system
is akin to the well-known water balance equations
(nonlinear in Robot Dance).

In the set of epidemiological constraints, the mean
of new infections caused by a single infected indi-
vidual determines how the disease spreads, when
the pandemic ends, which portion of the population
needs to be vaccinated to declare the infection con-
trolled. This is the effective reproduction number,
denoted by 7; for each time step. Since transmission
occurs when people meet, keeping r; low amounts to
restricting circulation or imposing some social dis-
tancing measure. In Robot Dance, r; is the control
variable.

Brazil has large urban centers surrounded by many
dormitory towns from which people commute to
work. In order to account for mobility, the SEIR dy-
namics in Robot Dance incorporates the flow of day
and night circulation through a certain contact ma-
trix. For each sub-region ¢, the ith row of this matrix
specifies average interactions with other sub-regions,
collected from anonymized data of cellular phones
[2, Section 3|. The epidemiological constraints in-
volve variables that are now indexed by sub-region
and time step.

A planning platform like Robot Dance has to bal-
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ance several goals, some stated as constraints, some
as metrics in the objective function. Maintaining
healthcare capacity is fundamental to help minimiz-
ing the disruption to society. With this aim, we en-
dowed the model with probabilistic constraints. In
the infected compartment, there is a certain percent-
age that will need attention in the intensive care unit.
Robot Dance models this ratio as a stochastic pro-
cess icui(w), and sets a chance constraint to keep
the use of intensive care unit beds below cap!, the
maximum capacity in the ith sub-region at time t:

t
P |icul(w) Z It < cap!| >0.95,
T=t—-T

where the sum over seven days reflects the average
time spent in intensive care units. Official records,
corrected by a factor that estimates under-reported
cases, gives a history of ratios. In turn, this data is
used to calibrate a time series that approximates the
stochastic process. Having an explicit expression for
the time series makes it possible to reformulate the
probabilistic constraint into an equivalent determin-
istic inequality that is affine [2, Section 4].

Given rg, the basic reproductive number represent-
ing life in the “old normal”, before the outbreak, the
problem is

360
min T
i ;wt( )
s.t. (SEIR,r) satisfy the discretized

epidemiological relations
1 satisfies the explicit relations

In this large-scale nonconvex program, the objective
function mirrors different measures the government
wishes to impose. If the desired policy is to encour-
age maximal circulation, 1;(-) represents the mean
deviation between r! and ro. It is also possible to
include a total variation term to avoid too abrupt
changes in the control, as well as terms promoting an
alternation of strict measures in nearby cities. This
last strategy, suggested in the blog [3], that takes
turns between a “hammer” of lockdown and a “dance”
with open economy, explains the name Robot Dance.

For the state of Sao Paulo in Brazil, Robot Dance
was able to pinpoint one particular weak link in the
complex network of the state, with more than 20 dif-
ferent health districts or sub-regions. It appeared

for the probabilistic constraint .
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that one minor link was crucial for the success of
confinement measures in a state with more than 40
million inhabitants. Sao Paulo city is home to about
25% of the state’s population but harbors about 70%
of the state’s intensive care unit beds. Because of the
low capacity of beds in one small sub-region that has
an intense flow with the state capital, Sao Paulo city,
a very long lockdown period was necessary to con-
tain the disease. By examining the output of Robot
Dance, it became clear that if the state capital shared
a small portion of beds with a few satellite dormitory
towns, the trajectory of the pandemic could be con-
trolled by imposing a shorter lockdown in the whole
state, |2, Section 5.4]. Without resorting to chance-
constrained optimization, performing only scenario
analysis as often in the literature, the solution pro-
posed by Robot Dance could not have been found.

The platform was extended to design a testing
campaign, in a context when PCR-tests are scarce
and no mechanism for contact tracing is put in place
(like in Brazil). The model in [5] includes a com-
partment of quarantined population and additional
control variables, the number of tests performed at
each time step in each sub-region, together with lo-
gistic constraints on testing capacity. Once more, op-
timization provided a solution and insights that were
superior to “natural” policies. The Figure shows the
output of Robot Dance,

Number of tests per million people (Day 0)
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a strategy that tests proportionally to the number
of inhabitants, and two other naive protocols: test-
ing only on big urban centers, or prioritizing small
cities (because they have reduced hospital capacity).
Rather than concentrating the tests in Sao Paulo
city, Robot Dance testing focuses on the nearby
neighboring regions with little to no testing in the
capital. The optimal strategy found with Robot
Dance is twice more effective than all the considered
alternatives.

We are currently working on optimal deployment
of vaccination campaigns, trying to understand to
which extent stretching the time between two doses
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can help relieving pressure on intensive care units.
This requires including age groups and vaccine re-
lated states in the SEIR model. Considering the
current vaccine scarcity, the delivery delays, and that
new virus strains seem to be more contagious, this is
a pressing problem in Brazil nowadays.
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Stochastic Programming
Events in 2021

Below please find a list of events related to Stochas-
tic Programming in 2021. The situation due to
COVID-19 is rapidly changing. Therefore,
please check the provided links for the latest
information.

e Conference title: 31st Furopean Conference on
Operational Research
Where/when: Athens, 11-14 July, 2021
Stream and sessions devoted to Stochastic and
Robust Optimization (organizers: Milo§ Kopa,
Francesca Maggioni and Steffen Rebennack)
More information: https://euro202lathens.
com/.
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e Conference title: SIAM Conference on Opti-

mization

Where/when: Spokane, Washington, U.S. July
20 - 23, 2021

Minisymposium devoted to Stochastic and Ro-
bust Optimization (organizers: Andy Sun and
Wolfram Wiesemann)

More information: https://www.siam.org/
conferences/cm/conference/op21.

Conference title: ECSO-CMS-2021 Conference
Where/when: Ca’ Foscari University of Venice,
July 7-9, 2021, Postponed to 2022. Updates
will be published in the website: https:
//1nkd.in/gG98TEP

Conference title: 24th International Symposium
on Mathematical Programming (ISMP)

Stream devoted to Stochastic optimization (or-
ganizers: Giizin Bayraksan, Francesca Maggioni
and Peter Richtarik). Where/when: Beijing,
China, August 15-20, 2021, Postponed to Au-
gust 14-19, 2022. Updates will be pub-
lished in the website: http://ismp2022.
csp.escience.cn/dct/page/1

Conference title: International Conference on
Optimization and Decision Science (ODS2021)
Stream: Optimization under uncertainty (or-
ganizers: Patrizia Beraldi and Francesca Mag-
gioni)

Where/when: Rome, September 14-17, 2021
More information: https://www.optit.net/
events/ods-2021/

Workshop title:  Optimization under Uncer-
tainty

Where/when: Montréal, September 27 - Octo-
ber 1, 2021. Please check the website for
updates: https://1lnkd.in/gdHHVgW

Conference Title: INFORMS Annual Meeting
2021

Stream: Optimization under uncertainty (Clus-
ter Chair: Dr. Weijun Xie)

Where/When: Anaheim, CA (In-person or Vir-
tual) October 24-27, 2021

More information: If you are interested in giv-
ing a talk and/or chairing a session in this
cluster, please enter your talk or session at
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https://tinyurl.com/1tqi49pl. Should you
have any questions, please contact Dr. Weijun
Xie (wxie@vt.edu).

ICSP XVI

July 24-28, 2023 Davis, California, USA
David Woodruff

UC Davis Graduate School of Management (USA)
DLWoodruff@UCDavis.edu

Change of date! We are going to hold the six-
teenth International Conference on Stochastic Pro-
gramming (ICSP) during the last week of July 2023:
July 2428, 2023. If you are on the program com-
mittee for any other conferences, please try to avoid
that week.

We are starting work on the website:

https://gsm.ucdavis.edu/faculty-and-
research/faculty-conferences/xvi
-international-conference
-stochastic-programming

If you want to organize a session or a track, please
let us know at DLWoodruff@UCDavis.edu

Figure 1: UC Davis campus
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