
Computational Stochastic Programming

Jeff Linderoth

Dept. of ISyE
Dept. of CS

Univ. of Wisconsin-Madison
linderoth@wisc.edu

SPXIII Bergamo, Italy July 7, 2013

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 1 / 89

Mission Impossible!

It is impossible to discuss all of “computational SP” in 90 minutes.

I will focus on a few basic topics, and (try to) provide references for a
few others.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 2 / 89

Bias

Bias

The bias of an estimator is the difference between this estimator’s
expected value E[θ̂] and the true value of the parameter θ.

An estimator is unbiased if E[θ̂− θ] = 0

I Am Biased!

But this lecture is also extremely biased, in the English sense of
the word.

It will cover best things that I know most about

There is lots of great work in computational SP that I
(unfortunately) won’t mention.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 3 / 89

Bias

Bias

The bias of an estimator is the difference between this estimator’s
expected value E[θ̂] and the true value of the parameter θ.

An estimator is unbiased if E[θ̂− θ] = 0

I Am Biased!

But this lecture is also extremely biased, in the English sense of
the word.

It will cover best things that I know most about

There is lots of great work in computational SP that I
(unfortunately) won’t mention.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 3 / 89

What I WILL cover
Stochastic LP w/Recourse (Primarily 2-Stage)

Decomposition.

Benders Decomposition
Lagrangian Relaxation—Dual Decomposition

Stochastic approximation

Modern/Bundle-type methods.

Trust region methods
Regularized Decomposition
The level method

Multistage Extensions

Software Tools

SMPS format

Some available software tools for modeling and solving

Role of parallel computing

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 4 / 89

What I WILL cover
Stochastic LP w/Recourse (Primarily 2-Stage)

Decomposition.

Benders Decomposition
Lagrangian Relaxation—Dual Decomposition

Stochastic approximation

Modern/Bundle-type methods.

Trust region methods
Regularized Decomposition
The level method

Multistage Extensions

Software Tools

SMPS format

Some available software tools for modeling and solving

Role of parallel computing

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 4 / 89

Other Things Covered

Sampling

“Exterior” Sampling Methods – Sample Average Approximation

“Interior” Sampling Methods

Stochastic Quasi-Gradient
Stochastic Decomposition
Mirror-Prox Methods

Stochastic Integer Programming

Integer L-Shaped

Dual Decomposition

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 5 / 89

Other Things Covered

Sampling

“Exterior” Sampling Methods – Sample Average Approximation

“Interior” Sampling Methods

Stochastic Quasi-Gradient
Stochastic Decomposition
Mirror-Prox Methods

Stochastic Integer Programming

Integer L-Shaped

Dual Decomposition

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 5 / 89

Stochastic Programming

A Stochastic Program

min
x∈X

f(x)
def
= Eω[F(x,ω)]

2 Stage Stochastic LP w/Recourse

F(x,ω)
def
= cTx+Q(x,ω)

cTx: Pay me now

Q(x,ω): Pay me later

The Recourse Problem

Q(x,ω)
def
= minq(ω)Ty

W(ω)y = h(ω) − T(ω)x

y ≥ 0

E[F(x,ω)] = cTx+ E[Q(x,ω)]
def
= cTx+ φ(x)

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 6 / 89

Stochastic Programming

A Stochastic Program

min
x∈X

f(x)
def
= Eω[F(x,ω)]

2 Stage Stochastic LP w/Recourse

F(x,ω)
def
= cTx+Q(x,ω)

cTx: Pay me now

Q(x,ω): Pay me later

The Recourse Problem

Q(x,ω)
def
= minq(ω)Ty

W(ω)y = h(ω) − T(ω)x

y ≥ 0

E[F(x,ω)] = cTx+ E[Q(x,ω)]
def
= cTx+ φ(x)

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 6 / 89

Stochastic Programming

A Stochastic Program

min
x∈X

f(x)
def
= Eω[F(x,ω)]

2 Stage Stochastic LP w/Recourse

F(x,ω)
def
= cTx+Q(x,ω)

cTx: Pay me now

Q(x,ω): Pay me later

The Recourse Problem

Q(x,ω)
def
= minq(ω)Ty

W(ω)y = h(ω) − T(ω)x

y ≥ 0

E[F(x,ω)] = cTx+ E[Q(x,ω)]
def
= cTx+ φ(x)

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 6 / 89

Decomposition Algorithms

Two Ways of Thinking

Algorithms are
“equivalent” regardless
of how you think about
them.

But thinking in
different ways gives
different insights

Complementary Viewpoints

1 As a “large-scale” problem for which you will apply decomposition
techniques

2 As a “oracle” convex optimization problem

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 7 / 89

Decomposition Algorithms

Two Ways of Thinking

Algorithms are
“equivalent” regardless
of how you think about
them.

But thinking in
different ways gives
different insights

Complementary Viewpoints

1 As a “large-scale” problem for which you will apply decomposition
techniques

2 As a “oracle” convex optimization problem

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 7 / 89

Decomposition: A Popular Method

M
E
T
H O D

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 8 / 89

Extensive Form

Large Scale = Extensive Form

This is sometimes called the deterministic equivalent, but I prefer the
term extensive form

Assume Ω = {ω1,ω2, . . .ωS} ⊆ Rr,
P(ω = ωs) = ps, ∀s = 1, 2, . . . , S

Ts
def
= T(ωs), hs

def
= h(ωs), qs

def
= q(ωs),WS =W(ωs)

Then can the write extensive form as just a large LP:

cTx + p1q
T
1y1 + p2q

T
2y2 + · · · + psq

T
sys

Ax = b
T1x + W1y1 = h1
T2x + W2y2 = h2

... +
. . .

...
TSx + WSys = hs
x ∈ X y1 ∈ Y y2 ∈ Y ys ∈ Y

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 9 / 89

Extensive Form

Large Scale = Extensive Form

This is sometimes called the deterministic equivalent, but I prefer the
term extensive form

Assume Ω = {ω1,ω2, . . .ωS} ⊆ Rr,
P(ω = ωs) = ps, ∀s = 1, 2, . . . , S

Ts
def
= T(ωs), hs

def
= h(ωs), qs

def
= q(ωs),WS =W(ωs)

Then can the write extensive form as just a large LP:

cTx + p1q
T
1y1 + p2q

T
2y2 + · · · + psq

T
sys

Ax = b
T1x + W1y1 = h1
T2x + W2y2 = h2

... +
. . .

...
TSx + WSys = hs
x ∈ X y1 ∈ Y y2 ∈ Y ys ∈ Y

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 9 / 89

Extensive Form

Small SP’s are Easy!

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

number of scenarios

T
im

e

Cplex/Extensive Form

L−shaped

In my experience, using barrier/interior point method is faster than
simplex/pivoting-based methods for solving extensive form LPs.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 10 / 89

Extensive Form

Small SP’s are Easy!

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

number of scenarios

T
im

e

Cplex/Extensive Form

L−shaped

In my experience, using barrier/interior point method is faster than
simplex/pivoting-based methods for solving extensive form LPs.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 10 / 89

Extensive Form

The Upshot

If it is too large to solve directly, then we must exploit the structure.
If I fix the first stage variables x, then the problem decomposes by
scenario

cTx + p1q
T
1y1 + p2q

T
2y2 + · · · + psq

T
sys

Ax = b

T1x + W1y1 = h1
T2x + W2y2 = h2

... +
. . .

...
TSx + WSys = hs
x ∈ X y1 ∈ Y y2 ∈ Y ys ∈ Y

Key Idea

Benders Decomposition: Characterize the solution of a scenario
linear program as a function of first stage solution x

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 11 / 89

Extensive Form

The Upshot

If it is too large to solve directly, then we must exploit the structure.
If I fix the first stage variables x, then the problem decomposes by
scenario

cTx + p1q
T
1y1 + p2q

T
2y2 + · · · + psq

T
sys

Ax = b

T1x + W1y1 = h1
T2x + W2y2 = h2

... +
. . .

...
TSx + WSys = hs
x ∈ X y1 ∈ Y y2 ∈ Y ys ∈ Y

Key Idea

Benders Decomposition: Characterize the solution of a scenario
linear program as a function of first stage solution x

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 11 / 89

Extensive Form

The Upshot

If it is too large to solve directly, then we must exploit the structure.
If I fix the first stage variables x, then the problem decomposes by
scenario

cTx + p1q
T
1y1 + p2q

T
2y2 + · · · + psq

T
sys

Ax = b

T1x + W1y1 = h1
T2x + W2y2 = h2

... +
. . .

...
TSx + WSys = hs
x ∈ X y1 ∈ Y y2 ∈ Y ys ∈ Y

Key Idea

Benders Decomposition: Characterize the solution of a scenario
linear program as a function of first stage solution x

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 11 / 89

Extensive Form

Benders of Extensive Form

zLP(x) =
∑S
s=1 z

s
LP(x), where

zsLP(x) = inf{qTsy | Wsy = hs − Tsx, y ≥ 0}

The dual of the LP defining zsLP(x) is

sup{(hs − Tsx)
Tπ | WT

s π ≤ qs}.

Set of dual feasible solutions for scenario s:

Πs = {π ∈ Rm | WT
s π ≤ qs}

Vertices of Πs:
V(Πs) = {v1s, v2s, . . . , vVs,s}

Extreme rays of Πs:

R(Πs) = {r1s, r2s, . . . , rRs,s}

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 12 / 89

Extensive Form

Benders of Extensive Form

zLP(x) =
∑S
s=1 z

s
LP(x), where

zsLP(x) = inf{qTsy | Wsy = hs − Tsx, y ≥ 0}

The dual of the LP defining zsLP(x) is

sup{(hs − Tsx)
Tπ | WT

s π ≤ qs}.

Set of dual feasible solutions for scenario s:

Πs = {π ∈ Rm | WT
s π ≤ qs}

Vertices of Πs:
V(Πs) = {v1s, v2s, . . . , vVs,s}

Extreme rays of Πs:

R(Πs) = {r1s, r2s, . . . , rRs,s}

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 12 / 89

Extensive Form

(In Case You Forgot...) Minkowski’s Theorem

There are two ways to describe polyhedra. As an intersection of
halfspaces (by its facets), or by appropriate combinations of its
extreme points and extreme rays

Minkowski-Weyl Theorem

Let P = {x ∈ Rn | Ax ≤ b} have extreme points V(P) = {v1, v2, . . . vV }

and extreme rays R(P) = {r1, r2, . . . rR}, then

P =
{
x ∈ Rn | x =

V∑
j=1

λjvj +

R∑
j=1

µjrj

V∑
j=1

λj = 1, λj ≥ 0 ∀j = 1, . . . V, µj ≥ 0 ∀j = 1, . . . R
}

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 13 / 89

Extensive Form

A Little LP Theory

We assume that zsLP(x) is bounded below.

The LP is feasible (zsLP(x) < +∞) if there is not a direction of
unboundedness in the dual LP.

6 ∃r ∈ R(Πs) (WT
s r ≤ 0) such that (hs − Tsx)

T r > 0

So x is a feasible solution (zsLP(x) < +∞) if
(hs − Tsx)

Tr ≤ 0 ∀r = 1, . . . , Rs
If there is an optimal solution to an LP, then there is an optimal
solution that occurs at an extreme point.

By strong duality, the optimal solution to primal and dual LPs will
have same objective value, so

zsLP(x) = max
j=1,2,...VS

{(hs − Tsx)
Tvjs |

rTks(hs − Tsx) ≤ 0 ∀k = 1, 2, . . . Rs}

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 14 / 89

Extensive Form

A Little LP Theory

We assume that zsLP(x) is bounded below.

The LP is feasible (zsLP(x) < +∞) if there is not a direction of
unboundedness in the dual LP.

6 ∃r ∈ R(Πs) (WT
s r ≤ 0) such that (hs − Tsx)

T r > 0

So x is a feasible solution (zsLP(x) < +∞) if
(hs − Tsx)

Tr ≤ 0 ∀r = 1, . . . , Rs

If there is an optimal solution to an LP, then there is an optimal
solution that occurs at an extreme point.

By strong duality, the optimal solution to primal and dual LPs will
have same objective value, so

zsLP(x) = max
j=1,2,...VS

{(hs − Tsx)
Tvjs |

rTks(hs − Tsx) ≤ 0 ∀k = 1, 2, . . . Rs}

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 14 / 89

Extensive Form

A Little LP Theory

We assume that zsLP(x) is bounded below.

The LP is feasible (zsLP(x) < +∞) if there is not a direction of
unboundedness in the dual LP.

6 ∃r ∈ R(Πs) (WT
s r ≤ 0) such that (hs − Tsx)

T r > 0

So x is a feasible solution (zsLP(x) < +∞) if
(hs − Tsx)

Tr ≤ 0 ∀r = 1, . . . , Rs
If there is an optimal solution to an LP, then there is an optimal
solution that occurs at an extreme point.

By strong duality, the optimal solution to primal and dual LPs will
have same objective value, so

zsLP(x) = max
j=1,2,...VS

{(hs − Tsx)
Tvjs |

rTks(hs − Tsx) ≤ 0 ∀k = 1, 2, . . . Rs}

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 14 / 89

Extensive Form

Developing Benders Decomposition

Scenario s second stage feasibility set:

Cs
def
= {x | ∃y ≥ 0 with Wsy = hs − Tsx}

= {x | hs − Tsx ∈ pos(Ws)}

First stage feasibility set X
def
= {x ∈ Rn+ | Ax = b}

Second stage feasibility set: C
def
= ∩Ss=1Cs

(2SP) min
x∈X∩C

f(x)
def
= cTx+

S∑
s=1

psQ(x,ωs)

x ∈ Cs ⇔ (hs − Tsx)
Trjs ≤ 0 ∀j = 1, . . . Rs

θs ≥ Q(x,ωs)⇔ θs ≥ (hs − Tsx)
Tvjs ∀j = 1, . . . Vs

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 15 / 89

Extensive Form

Developing Benders Decomposition

Scenario s second stage feasibility set:

Cs
def
= {x | ∃y ≥ 0 with Wsy = hs − Tsx}

= {x | hs − Tsx ∈ pos(Ws)}

First stage feasibility set X
def
= {x ∈ Rn+ | Ax = b}

Second stage feasibility set: C
def
= ∩Ss=1Cs

(2SP) min
x∈X∩C

f(x)
def
= cTx+

S∑
s=1

psQ(x,ωs)

x ∈ Cs ⇔ (hs − Tsx)
Trjs ≤ 0 ∀j = 1, . . . Rs

θs ≥ Q(x,ωs)⇔ θs ≥ (hs − Tsx)
Tvjs ∀j = 1, . . . Vs

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 15 / 89

Extensive Form

Benders-LShaped

Use these results

Introduce “auxiliary” variables θs to represent the value of Q(x,ωs)

N.B. I am changing notation just a little bit

Unaggregated: Full Multicut

min cTx+
∑
s∈S

psθs

rTTsx ≥ rThs ∀s ∈ S,∀r ∈ R(Πs)
θs + v

TTsx ≥ vThs ∀s ∈ S, ∀v ∈ V(Πs)
Ax = b

x ≥ 0

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 16 / 89

Extensive Form

Benders-LShaped

Use these results

Introduce “auxiliary” variables θs to represent the value of Q(x,ωs)

N.B. I am changing notation just a little bit

Unaggregated: Full Multicut

min cTx+
∑
s∈S

psθs

rTTsx ≥ rThs ∀s ∈ S,∀r ∈ R(Πs)
θs + v

TTsx ≥ vThs ∀s ∈ S, ∀v ∈ V(Πs)
Ax = b

x ≥ 0

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 16 / 89

Extensive Form

LShaped Method.

Aggregate inequalities and remove variables θs for each scenario.

Instead introduce variable: Θ ≥
∑
s∈S psθs ≥ ps(vTshs − vTs Tsx)

(choosing any vs ∈ V(Πs).

Fully-Aggregated: LShaped

min cTx+Θ

rTTsx ≥ rThs ∀s ∈ S,∀r ∈ R(Πs)

Θ+
∑
s∈S

psv
TTsx ≥

∑
s∈S

psv
Ths ∀v ∈ V(Πs)

Ax = b

x ≥ 0

N.B. Different aggregations are possible

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 17 / 89

Extensive Form

LShaped Method.

Aggregate inequalities and remove variables θs for each scenario.

Instead introduce variable: Θ ≥
∑
s∈S psθs ≥ ps(vTshs − vTs Tsx)

(choosing any vs ∈ V(Πs).

Fully-Aggregated: LShaped

min cTx+Θ

rTTsx ≥ rThs ∀s ∈ S,∀r ∈ R(Πs)

Θ+
∑
s∈S

psv
TTsx ≥

∑
s∈S

psv
Ths ∀v ∈ V(Πs)

Ax = b

x ≥ 0

N.B. Different aggregations are possible

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 17 / 89

Extensive Form

A Whole Spectrum

Complete Aggregation (Traditional LShaped): One variable for φ(x)

Complete Multicut: |S| variables for φ(x)

We can do anything in between...

Partition the scenarios into C “clusters” S1, S2, . . .SC.

φ[Sk](x) =
∑
s∈Sk

psQ(x,ωs)

Θ[Sk] ≥
∑
s∈Sk psQ(x,ωs)

References

Original multicut paper: [Birge and Louveaux, 1988]

You need not stay with one fixed aggregation:

Recent paper by Trukhanov et al. [2010]
Ph.D. thesis by Janjarassuk [2009].

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 18 / 89

Extensive Form

A Whole Spectrum

Complete Aggregation (Traditional LShaped): One variable for φ(x)

Complete Multicut: |S| variables for φ(x)

We can do anything in between...

Partition the scenarios into C “clusters” S1, S2, . . .SC.

φ[Sk](x) =
∑
s∈Sk

psQ(x,ωs)

Θ[Sk] ≥
∑
s∈Sk psQ(x,ωs)

References

Original multicut paper: [Birge and Louveaux, 1988]

You need not stay with one fixed aggregation:

Recent paper by Trukhanov et al. [2010]
Ph.D. thesis by Janjarassuk [2009].

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 18 / 89

Extensive Form

Benders Decomposition

Regardless of aggregation, linear program is likely to have
exponentially many constraints.

Benders Decomosition is a cutting plane method for solving one of
the linear programs.

I will describe for (full) multicut, but other algorithms are really just
aggregated version of this one

Basic Questions

For a given xk, θk1 , . . . , θ
k
s , we must check for each scenario s ∈ S

1 If there ∃r ∈ R(Πs) such that rTsx <
T hs

2 If there ∃v ∈ V(Πs) such that θks + v
TTsx

k < vThs

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 19 / 89

Extensive Form

Benders Decomposition

Regardless of aggregation, linear program is likely to have
exponentially many constraints.

Benders Decomosition is a cutting plane method for solving one of
the linear programs.

I will describe for (full) multicut, but other algorithms are really just
aggregated version of this one

Basic Questions

For a given xk, θk1 , . . . , θ
k
s , we must check for each scenario s ∈ S

1 If there ∃r ∈ R(Πs) such that rTsx <
T hs

2 If there ∃v ∈ V(Πs) such that θks + v
TTsx

k < vThs

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 19 / 89

Extensive Form

Find a Ray?

Phase 1 LP:

Us(x
k) = min 1Tu+ 1Tv

Wsy+ u− v = hs − Tsx
k

y, u, v ≥ 0

Its Dual

max πT (hs − Tsx)

WT
s π ≤ 0

−1 ≤ π ≤ 1

If Us(x
k) > 0, then by strong duality it has an optimal dual solution

πk such that [πk]T (hs − Tsx
k) > 0, so if we add the inequality

(hs − Tsx)
Tπk ≤ 0

this will exclude the solution xk

πk from Phase-1 LP is the dual extreme ray!

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 20 / 89

Extensive Form

Find a Vertex

Question: Does ∃v ∈ V(Πs) such that θks + vTsx
k < vThs?

So we should
max
v∈V(Πs)

{(hs − Tsx
k)v}

Note this is the same as solving

sup{(hs − Tsx)
Tπ | WT

s π ≤ qs}.

And by duality, this is also the same as solving

zsLP(x) = inf{qTsy | Wsy = hs − Tsx, y ≥ 0},

and looking at the (optimal) dual variables for the constraints
Wsy = hs − Tsx.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 21 / 89

Extensive Form

Master Problem

Cutting Plane Algorithm Will Identify

Rs ⊆ R(Πs) subset of extreme rays of dual feasible set Πs

Vs ⊆ V(Πs) subset of extreme points of dual feasible set Πs

Full LP

min cTx+
∑
s∈S

psθs

rTTsx ≥ rThs ∀s ∈ S, ∀r ∈ R(Πs)
θs + v

TTsx ≥ vThs ∀s ∈ S,∀v ∈ V(Πs)
Ax = b

x ≥ 0

Master Problem

min cTx+
∑
s∈S

psθs

rTTsx ≥ rThs ∀s ∈ S,∀r ∈ Rs
θs + v

TTsx ≥ vThs ∀s ∈ S, ∀v ∈ Vs
Ax = b

x ≥ 0

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 22 / 89

Extensive Form

Master Problem

Cutting Plane Algorithm Will Identify

Rs ⊆ R(Πs) subset of extreme rays of dual feasible set Πs

Vs ⊆ V(Πs) subset of extreme points of dual feasible set Πs

Full LP

min cTx+
∑
s∈S

psθs

rTTsx ≥ rThs ∀s ∈ S, ∀r ∈ R(Πs)
θs + v

TTsx ≥ vThs ∀s ∈ S,∀v ∈ V(Πs)
Ax = b

x ≥ 0

Master Problem

min cTx+
∑
s∈S

psθs

rTTsx ≥ rThs ∀s ∈ S,∀r ∈ Rs
θs + v

TTsx ≥ vThs ∀s ∈ S, ∀v ∈ Vs
Ax = b

x ≥ 0

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 22 / 89

Extensive Form

Benders/Cutting Plane Method

1 k = 1,Rs = Vs = ∅ ∀s ∈ S, lb = −∞, ub =∞, x1 ∈ X

2 Done = true. For each s ∈ S

Solve Phase 1 LP to get Us(x
k). If Us(x

k) > 0⇒ Q(xk,ωs) =∞.
Let πks be optimal dual solution to Phase 1 LP. Rs ← Rs ∪ {πks },
Done = false. Go to 5.
Solve Phase-2 LP for Q(xk,ωs), let πks be its optimal dual multiplier.
If Q(xk,ωs) > θ

k
s , then Vs ← Vs ∪ {πks }, Done = false.

3 ub = cTxk +
∑
s∈S psQ(xk,ωs)

4 If ub− lb ≤ ε or Done = true then Stop. xk is an optimal
solution.

5 Solve Master problem. Let lb be its optimal solution value, and let
k← k+ 1. Let xk be the optimal solution to the master problem. Go
to 2.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 23 / 89

Extensive Form

Benders/Cutting Plane Method

1 k = 1,Rs = Vs = ∅ ∀s ∈ S, lb = −∞, ub =∞, x1 ∈ X
2 Done = true. For each s ∈ S

Solve Phase 1 LP to get Us(x
k). If Us(x

k) > 0⇒ Q(xk,ωs) =∞.
Let πks be optimal dual solution to Phase 1 LP. Rs ← Rs ∪ {πks },
Done = false. Go to 5.
Solve Phase-2 LP for Q(xk,ωs), let πks be its optimal dual multiplier.
If Q(xk,ωs) > θ

k
s , then Vs ← Vs ∪ {πks }, Done = false.

3 ub = cTxk +
∑
s∈S psQ(xk,ωs)

4 If ub− lb ≤ ε or Done = true then Stop. xk is an optimal
solution.

5 Solve Master problem. Let lb be its optimal solution value, and let
k← k+ 1. Let xk be the optimal solution to the master problem. Go
to 2.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 23 / 89

Extensive Form

Benders/Cutting Plane Method

1 k = 1,Rs = Vs = ∅ ∀s ∈ S, lb = −∞, ub =∞, x1 ∈ X
2 Done = true. For each s ∈ S

Solve Phase 1 LP to get Us(x
k). If Us(x

k) > 0⇒ Q(xk,ωs) =∞.
Let πks be optimal dual solution to Phase 1 LP. Rs ← Rs ∪ {πks },
Done = false. Go to 5.

Solve Phase-2 LP for Q(xk,ωs), let πks be its optimal dual multiplier.
If Q(xk,ωs) > θ

k
s , then Vs ← Vs ∪ {πks }, Done = false.

3 ub = cTxk +
∑
s∈S psQ(xk,ωs)

4 If ub− lb ≤ ε or Done = true then Stop. xk is an optimal
solution.

5 Solve Master problem. Let lb be its optimal solution value, and let
k← k+ 1. Let xk be the optimal solution to the master problem. Go
to 2.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 23 / 89

Extensive Form

Benders/Cutting Plane Method

1 k = 1,Rs = Vs = ∅ ∀s ∈ S, lb = −∞, ub =∞, x1 ∈ X
2 Done = true. For each s ∈ S

Solve Phase 1 LP to get Us(x
k). If Us(x

k) > 0⇒ Q(xk,ωs) =∞.
Let πks be optimal dual solution to Phase 1 LP. Rs ← Rs ∪ {πks },
Done = false. Go to 5.
Solve Phase-2 LP for Q(xk,ωs), let πks be its optimal dual multiplier.
If Q(xk,ωs) > θ

k
s , then Vs ← Vs ∪ {πks }, Done = false.

3 ub = cTxk +
∑
s∈S psQ(xk,ωs)

4 If ub− lb ≤ ε or Done = true then Stop. xk is an optimal
solution.

5 Solve Master problem. Let lb be its optimal solution value, and let
k← k+ 1. Let xk be the optimal solution to the master problem. Go
to 2.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 23 / 89

Extensive Form

Benders/Cutting Plane Method

1 k = 1,Rs = Vs = ∅ ∀s ∈ S, lb = −∞, ub =∞, x1 ∈ X
2 Done = true. For each s ∈ S

Solve Phase 1 LP to get Us(x
k). If Us(x

k) > 0⇒ Q(xk,ωs) =∞.
Let πks be optimal dual solution to Phase 1 LP. Rs ← Rs ∪ {πks },
Done = false. Go to 5.
Solve Phase-2 LP for Q(xk,ωs), let πks be its optimal dual multiplier.
If Q(xk,ωs) > θ

k
s , then Vs ← Vs ∪ {πks }, Done = false.

3 ub = cTxk +
∑
s∈S psQ(xk,ωs)

4 If ub− lb ≤ ε or Done = true then Stop. xk is an optimal
solution.

5 Solve Master problem. Let lb be its optimal solution value, and let
k← k+ 1. Let xk be the optimal solution to the master problem. Go
to 2.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 23 / 89

Extensive Form

Benders/Cutting Plane Method

1 k = 1,Rs = Vs = ∅ ∀s ∈ S, lb = −∞, ub =∞, x1 ∈ X
2 Done = true. For each s ∈ S

Solve Phase 1 LP to get Us(x
k). If Us(x

k) > 0⇒ Q(xk,ωs) =∞.
Let πks be optimal dual solution to Phase 1 LP. Rs ← Rs ∪ {πks },
Done = false. Go to 5.
Solve Phase-2 LP for Q(xk,ωs), let πks be its optimal dual multiplier.
If Q(xk,ωs) > θ

k
s , then Vs ← Vs ∪ {πks }, Done = false.

3 ub = cTxk +
∑
s∈S psQ(xk,ωs)

4 If ub− lb ≤ ε or Done = true then Stop. xk is an optimal
solution.

5 Solve Master problem. Let lb be its optimal solution value, and let
k← k+ 1. Let xk be the optimal solution to the master problem. Go
to 2.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 23 / 89

Extensive Form

Benders/Cutting Plane Method

1 k = 1,Rs = Vs = ∅ ∀s ∈ S, lb = −∞, ub =∞, x1 ∈ X
2 Done = true. For each s ∈ S

Solve Phase 1 LP to get Us(x
k). If Us(x

k) > 0⇒ Q(xk,ωs) =∞.
Let πks be optimal dual solution to Phase 1 LP. Rs ← Rs ∪ {πks },
Done = false. Go to 5.
Solve Phase-2 LP for Q(xk,ωs), let πks be its optimal dual multiplier.
If Q(xk,ωs) > θ

k
s , then Vs ← Vs ∪ {πks }, Done = false.

3 ub = cTxk +
∑
s∈S psQ(xk,ωs)

4 If ub− lb ≤ ε or Done = true then Stop. xk is an optimal
solution.

5 Solve Master problem. Let lb be its optimal solution value, and let
k← k+ 1. Let xk be the optimal solution to the master problem. Go
to 2.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 23 / 89

Extensive Form

A First Example

min x1 + x2

subject to

ω1x1 + x2 ≥ 7

ω2x1 + x2 ≥ 4

x1 ≥ 0

x2 ≥ 0

ω = (ω1,ω2) ∈ Ω = {(1, 1/3), (5/2, 2/3), (4, 1)}

Each outcome has ps =
1
3

Huh?

This problem doesn’t make sense!

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 24 / 89

Extensive Form

A First Example

min x1 + x2

subject to

ω1x1 + x2 ≥ 7

ω2x1 + x2 ≥ 4

x1 ≥ 0

x2 ≥ 0

ω = (ω1,ω2) ∈ Ω = {(1, 1/3), (5/2, 2/3), (4, 1)}

Each outcome has ps =
1
3

Huh?

This problem doesn’t make sense!

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 24 / 89

Extensive Form

Recourse Formulation

min x1 + xs + λ
∑
s∈S

ps(y1s + y2s)

ω1sx1 + x2 + y1s ≥ 7 ∀s = 1, 2, 3
ω2sx1 + x2 + y2s ≥ 4 ∀s = 1, 2, 3
x1, x2, y1s, y2s ≥ 0 ∀s = 1, 2, 3

Stop! Gammer Time?

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 25 / 89

Extensive Form

Recourse Formulation

min x1 + xs + λ
∑
s∈S

ps(y1s + y2s)

ω1sx1 + x2 + y1s ≥ 7 ∀s = 1, 2, 3
ω2sx1 + x2 + y2s ≥ 4 ∀s = 1, 2, 3
x1, x2, y1s, y2s ≥ 0 ∀s = 1, 2, 3

Stop! Gammer Time?

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 25 / 89

Oracle-Based

Oracle-Based Methods

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 26 / 89

Oracle-Based

Two-Stage Stochastic LP with Recourse

Our problem is

min
x∈X

f(x)
def
= cTx+ E[Q(x,ω)]

where

X = {x ∈ Rn+ | Ax = b}

Q(x,ω) = min
y≥0

{q(ω)Ty | T(ω)x+W(ω)y = h(ω)}

In Q(x,ω), as x changes, the right hand side of the linear program
changes.

So, we should care very much about the value function of a linear
program with respect to changes in its right-hand-side: v : Rm → R̄

v(z) = min
y∈Rp+

{qTy | Wy = z}

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 27 / 89

Oracle-Based

Nice Theorems
Nice Theorem 1

Assume that

Π = {π ∈ Rm | WTπ ≤ q} 6= ∅}
∃z0 ∈ Rm such that ∃y0 ≥ 0 with Wy0 = z0

then v(z) is a

proper, convex, polyhedral function

∂v(z0) = arg max{πTz0 | π ∈ Π}

Nice Theorem 2

Under similar conditions (on each scenario Ws, qs)
f(x) = cTx+ E[Q(x,ω)] = cTx+ φ(x) is

proper, convex, and polyhedral

subgradients of f come from (transformed and aggregated)
optimal dual solutions of the second stage subproblems:

∂f(x0) = c+

S∑
s=1

ps

(
−T Ts arg max

π∈Πs
{πT (hs − Tsx0)}

)

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 28 / 89

Oracle-Based

Nice Theorems
Nice Theorem 1

Assume that

Π = {π ∈ Rm | WTπ ≤ q} 6= ∅}
∃z0 ∈ Rm such that ∃y0 ≥ 0 with Wy0 = z0

then v(z) is a

proper, convex, polyhedral function

∂v(z0) = arg max{πTz0 | π ∈ Π}

Nice Theorem 2

Under similar conditions (on each scenario Ws, qs)
f(x) = cTx+ E[Q(x,ω)] = cTx+ φ(x) is

proper, convex, and polyhedral

subgradients of f come from (transformed and aggregated)
optimal dual solutions of the second stage subproblems:

∂f(x0) = c+

S∑
s=1

ps

(
−T Ts arg max

π∈Πs
{πT (hs − Tsx0)}

)
Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 28 / 89

Oracle-Based

Easy Peasy?

(2SP) min
x∈X∩C

f(x)

We know that f(x) is a “nice”1 function

It is also true that X ∩ C is a “nice” polyhedral set, so it should be
easy to solve (2SP)

What’s the Problem?!

f(x) is given implicitly: To evaluate f(x), we must solve S linear
programs.

1proper, convex, polyhedral
Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 29 / 89

Oracle-Based

Overarching Theme

We will approximate2 f by ever-improving functions of the form
f(x) ≈ cTx+mk(x)

Where mk(x) is a model of our expected recourse function:

mk(x) ≈
S∑
s=1

psQ(x,ωs)
def
= φ(x).

We will also build ever-improving outerapproximations of C:
(Ck ⊇ C).

Since we know that Q(xk,ωs) is convex, and

∂Q(xk,ωs) = −T Ts arg max
π∈Πs

{πT (hs − Tsx
k)}

we can underapproximate Q(xk,ωs) using a (sub)-gradient inequality

2often underapproximate
Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 30 / 89

Oracle-Based

Overarching Theme

We will approximate2 f by ever-improving functions of the form
f(x) ≈ cTx+mk(x)

Where mk(x) is a model of our expected recourse function:

mk(x) ≈
S∑
s=1

psQ(x,ωs)
def
= φ(x).

We will also build ever-improving outerapproximations of C:
(Ck ⊇ C).

Since we know that Q(xk,ωs) is convex, and

∂Q(xk,ωs) = −T Ts arg max
π∈Πs

{πT (hs − Tsx
k)}

we can underapproximate Q(xk,ωs) using a (sub)-gradient inequality
2often underapproximate

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 30 / 89

Oracle-Based

Building a model
By definition of convexity, we get

Q(x,ωs) ≥ Q(xk,ωs) + y
T (x− xk) ∀y ∈ ∂Q(xk,ωs)

≥ Q(xk,ωs) + [−T Ts π
k
s]
T (x− xk)

for some πks ∈ arg max
π∈Πs

{πT (hs − Tsx
k)}

= Q(xk,ωs) + [πks]
TTsx

k − πksTsx

= βks + (αks)
Tx

We3 aggregate these together to build a model of φ(x)

φ(x) =

S∑
s=1

psQ(X,ωs) ≥
S∑
s=1

psβ
k
s +

S∑
s=1

ps[α
k
s]
Tx

= β̄k + [ᾱk]Tx

3sometimes
Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 31 / 89

Oracle-Based

Our Model

Choose some different
xj ∈ X, πjs ∈ arg maxπ∈Πs{π

T (hs − Tsx
k), j = 1, . . . k− 1

βjs =Q(xj,ωs) + [πjs]
TTsx

j β̄j =

S∑
s=1

psβ
j
s

αjs = −πksTs ᾱj =

S∑
s=1

psα
j
s

Our Model (to minimize)

mk(x) = max
j=1,...,k−1

{β̄j + [ᾱj]Tx}

We model the process of minimizing the maximum using an auxiliary
variable θ:

θ ≥ β̄j + [ᾱj]Tx ∀j = 1, . . . k− 1
Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 32 / 89

Oracle-Based

An Oracle-Based Method for Convex Minimization

We assume f : X ⊆ Rn → R is a convex function given by an “oracle”:
We can get values f(xk) and subgradients sk ∈ ∂f(xk) for xk ∈ X

1 Find x1 ∈ X, k← 1, θ1 ← −∞,ub←∞, I = ∅
2 Subproblem: Compute f(xk), sk ∈ ∂f(xk).ub← min{f(xk),ub}

3 If θk = f(xk). STOP, xk is optimal.

4 Else: I = I ∪ {k}. Solve Master:

min
θ,x∈X

{θ | θ ≥ f(xi) + sTi (x− xi) ∀i ∈ I}.

Let solution be xk+1, θk. Go to 2.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 33 / 89

Oracle-Based

Worth 1000 Words

x

φ(x)

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 34 / 89

Oracle-Based

Worth 1000 Words

x

φ(x)

xk

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 35 / 89

Oracle-Based

Worth 1000 Words

x

φ(x)

x1x2

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 36 / 89

Oracle-Based Regularizing

A Dumb Algorithm?

xk+1 ∈ arg min
x∈Rn+

{cTx+mk(x) | Ax = b}

What happens if you start the algorithm with an initial iterate that is
the optimal solution x∗?

Are you done?

Unfortunately, no.

At the first iterations, we have a very poor model mk(·), so when we
minimize this model, we may move very far away from x∗

A variety of methods in stochastic programming use well-known
methods from nonlinear programming/convex optimization to ensure
that iterations are well-behaved.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 37 / 89

Oracle-Based Regularizing

A Dumb Algorithm?

xk+1 ∈ arg min
x∈Rn+

{cTx+mk(x) | Ax = b}

What happens if you start the algorithm with an initial iterate that is
the optimal solution x∗?

Are you done?

Unfortunately, no.

At the first iterations, we have a very poor model mk(·), so when we
minimize this model, we may move very far away from x∗

A variety of methods in stochastic programming use well-known
methods from nonlinear programming/convex optimization to ensure
that iterations are well-behaved.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 37 / 89

Oracle-Based Regularizing

Regularizing

Borrow the trust region concept from NLP (Linderoth and
Wright [2003])

At iteration k
Have an “incumbent” solution xk

Impose constraints ‖x − xk‖∞ ≤ ∆k
∆k large ⇒ like LShaped

∆k small ⇒ “stay very close”.

This is often called Regularizing the method.

Another (Good) Idea

“Penalize” the length of the step you will take.

min cTx+
∑
j∈C θj + 1/(2ρ)‖x− xk‖2

ρ large ⇒ like LShaped
ρ small ⇒ “stay very close”.

This is known as the regularized decomposition method.

Pioneered in stochastic programming by Ruszczyński [1986].

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 38 / 89

Oracle-Based Regularizing

Regularizing

Borrow the trust region concept from NLP (Linderoth and
Wright [2003])

At iteration k
Have an “incumbent” solution xk

Impose constraints ‖x − xk‖∞ ≤ ∆k
∆k large ⇒ like LShaped

∆k small ⇒ “stay very close”.

This is often called Regularizing the method.

Another (Good) Idea

“Penalize” the length of the step you will take.

min cTx+
∑
j∈C θj + 1/(2ρ)‖x− xk‖2

ρ large ⇒ like LShaped
ρ small ⇒ “stay very close”.

This is known as the regularized decomposition method.

Pioneered in stochastic programming by Ruszczyński [1986].

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 38 / 89

Oracle-Based Regularizing

Trust Region Effect: Step Length

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25

S
te

p
S

iz
e

Iteration

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 39 / 89

Oracle-Based Regularizing

Trust Region Effect: Function Values

1.2e+07

1.3e+07

1.4e+07

1.5e+07

1.6e+07

1.7e+07

1.8e+07

1.9e+07

2e+07

0 5 10 15 20 25

V
al

ue

Iteration

LShaped function value
LShaped master value

Trust region function value
Trust region master value

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 40 / 89

Oracle-Based Regularizing

Bundle-Trust

These ideas are known in the nondifferentiable optimization
community as “Bundle-Trust-Region” methods.

Bundle — Build up a bundle of subgradients to better approximate
your function. (Get a better model m(·))
Trust region — Stay close (in a region you trust), until you build up a
good enough bundle to model your function accurately

Accept new iterate if it improves the objective by a “sufficient”
amount. Potentially increase ∆k or ρ. (Serious Step)

Otherwise, improve the estimation of φ(xk), resolve master problem,
and potentially reduce ∆k of ρ (Null Step)

These methods can be shown to converge, even if cuts are deleted
from the master problem.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 41 / 89

Oracle-Based Regularizing

Vanilla Trust Region

f(x) = cTx+ φ(x)

f̂k(x) = cTx+mk(x)

1 Let x1 ∈ X,∆ > 0, µ ∈ (0, 1)K = ∅k = 1, y1 = x1

2 Compute f(y1) and subgradient model update information: (β̄, ᾱj) if
LShaped.

3 Master: Let yk+1 ∈ arg min{cTx+mk(x) | x ∈ (B(xk, ∆) ∩ X})
4 Compute predicted decrease:

δk = f(xk) − f̂k(yk+1)

5 If δk ≤ ε Stop, yk+1 is optimal.
6 Subproblems: Compute f(yk+1) and subgradient information.

Update mk(x) with subgradient information from yk+1.
If f(xk) − f(yk+1) ≥ µδk, then Serious Step: xk+1 ← yk+1

Else: Null Step:

7 xk+1 ← xk

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 42 / 89

Oracle-Based Regularizing

Vanilla Trust Region

f(x) = cTx+ φ(x)

f̂k(x) = cTx+mk(x)

1 Let x1 ∈ X,∆ > 0, µ ∈ (0, 1)K = ∅k = 1, y1 = x1

2 Compute f(y1) and subgradient model update information: (β̄, ᾱj) if
LShaped.

3 Master: Let yk+1 ∈ arg min{cTx+mk(x) | x ∈ (B(xk, ∆) ∩ X})
4 Compute predicted decrease:

δk = f(xk) − f̂k(yk+1)

5 If δk ≤ ε Stop, yk+1 is optimal.
6 Subproblems: Compute f(yk+1) and subgradient information.

Update mk(x) with subgradient information from yk+1.
If f(xk) − f(yk+1) ≥ µδk, then Serious Step: xk+1 ← yk+1

Else: Null Step:

7 xk+1 ← xk

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 42 / 89

Oracle-Based Regularizing

Vanilla Trust Region

f(x) = cTx+ φ(x)

f̂k(x) = cTx+mk(x)

1 Let x1 ∈ X,∆ > 0, µ ∈ (0, 1)K = ∅k = 1, y1 = x1

2 Compute f(y1) and subgradient model update information: (β̄, ᾱj) if
LShaped.

3 Master: Let yk+1 ∈ arg min{cTx+mk(x) | x ∈ (B(xk, ∆) ∩ X})
4 Compute predicted decrease:

δk = f(xk) − f̂k(yk+1)

5 If δk ≤ ε Stop, yk+1 is optimal.

6 Subproblems: Compute f(yk+1) and subgradient information.
Update mk(x) with subgradient information from yk+1.

If f(xk) − f(yk+1) ≥ µδk, then Serious Step: xk+1 ← yk+1

Else: Null Step:

7 xk+1 ← xk

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 42 / 89

Oracle-Based Regularizing

Vanilla Trust Region

f(x) = cTx+ φ(x)

f̂k(x) = cTx+mk(x)

1 Let x1 ∈ X,∆ > 0, µ ∈ (0, 1)K = ∅k = 1, y1 = x1

2 Compute f(y1) and subgradient model update information: (β̄, ᾱj) if
LShaped.

3 Master: Let yk+1 ∈ arg min{cTx+mk(x) | x ∈ (B(xk, ∆) ∩ X})
4 Compute predicted decrease:

δk = f(xk) − f̂k(yk+1)

5 If δk ≤ ε Stop, yk+1 is optimal.
6 Subproblems: Compute f(yk+1) and subgradient information.

Update mk(x) with subgradient information from yk+1.
If f(xk) − f(yk+1) ≥ µδk, then Serious Step: xk+1 ← yk+1

Else: Null Step:

7 xk+1 ← xk

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 42 / 89

Oracle-Based Level Method

Level Method

Basic Idea

Instead of restricting search to points in the neighborhood of the
current iterate, you restrict the research to points whose objective
lies in the neighborhood of the current iterate.

Idea is from Lemaréchal et al. [1995]

mk(x) = maxi=1,...,k{f(x
i) + sTi (x− x

i)}

1 Choose λ ∈ (0, 1), x1 ∈ X, k = 1

2 Compute f(xk), sk ∈ ∂f(xk), update mk(x)

3 Minimize Model: zk = minx∈Xm
k(x) Let zk = mini=1,...,k{f(x

i)} be
the best objective value you’ve seen so far

4 Project: Let `k = zk + λ(zk − zk).
xk+1 ∈ arg minx∈X{‖x− xk‖2 | mk(x) ≤ `k}.k← k+ 1. Go to 2.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 43 / 89

Oracle-Based Level Method

Level Method

Basic Idea

Instead of restricting search to points in the neighborhood of the
current iterate, you restrict the research to points whose objective
lies in the neighborhood of the current iterate.

Idea is from Lemaréchal et al. [1995]

mk(x) = maxi=1,...,k{f(x
i) + sTi (x− x

i)}

1 Choose λ ∈ (0, 1), x1 ∈ X, k = 1

2 Compute f(xk), sk ∈ ∂f(xk), update mk(x)

3 Minimize Model: zk = minx∈Xm
k(x) Let zk = mini=1,...,k{f(x

i)} be
the best objective value you’ve seen so far

4 Project: Let `k = zk + λ(zk − zk).
xk+1 ∈ arg minx∈X{‖x− xk‖2 | mk(x) ≤ `k}.k← k+ 1. Go to 2.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 43 / 89

Oracle-Based Level Method

Level Method

Basic Idea

Instead of restricting search to points in the neighborhood of the
current iterate, you restrict the research to points whose objective
lies in the neighborhood of the current iterate.

Idea is from Lemaréchal et al. [1995]

mk(x) = maxi=1,...,k{f(x
i) + sTi (x− x

i)}

1 Choose λ ∈ (0, 1), x1 ∈ X, k = 1

2 Compute f(xk), sk ∈ ∂f(xk), update mk(x)

3 Minimize Model: zk = minx∈Xm
k(x) Let zk = mini=1,...,k{f(x

i)} be
the best objective value you’ve seen so far

4 Project: Let `k = zk + λ(zk − zk).
xk+1 ∈ arg minx∈X{‖x− xk‖2 | mk(x) ≤ `k}.k← k+ 1. Go to 2.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 43 / 89

Oracle-Based Level Method

Level Method

Basic Idea

Instead of restricting search to points in the neighborhood of the
current iterate, you restrict the research to points whose objective
lies in the neighborhood of the current iterate.

Idea is from Lemaréchal et al. [1995]

mk(x) = maxi=1,...,k{f(x
i) + sTi (x− x

i)}

1 Choose λ ∈ (0, 1), x1 ∈ X, k = 1

2 Compute f(xk), sk ∈ ∂f(xk), update mk(x)

3 Minimize Model: zk = minx∈Xm
k(x) Let zk = mini=1,...,k{f(x

i)} be
the best objective value you’ve seen so far

4 Project: Let `k = zk + λ(zk − zk).
xk+1 ∈ arg minx∈X{‖x− xk‖2 | mk(x) ≤ `k}.k← k+ 1. Go to 2.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 43 / 89

Oracle-Based Level Method

Level Method

Basic Idea

Instead of restricting search to points in the neighborhood of the
current iterate, you restrict the research to points whose objective
lies in the neighborhood of the current iterate.

Idea is from Lemaréchal et al. [1995]

mk(x) = maxi=1,...,k{f(x
i) + sTi (x− x

i)}

1 Choose λ ∈ (0, 1), x1 ∈ X, k = 1

2 Compute f(xk), sk ∈ ∂f(xk), update mk(x)

3 Minimize Model: zk = minx∈Xm
k(x) Let zk = mini=1,...,k{f(x

i)} be
the best objective value you’ve seen so far

4 Project: Let `k = zk + λ(zk − zk).
xk+1 ∈ arg minx∈X{‖x− xk‖2 | mk(x) ≤ `k}.k← k+ 1. Go to 2.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 43 / 89

Oracle-Based Level Method

Convergence Rate

A function f : X→ R is Lipschitz continuous over its domain X if
∃L ∈ R such that

|f(y) − f(x)| ≤ L‖y− x‖ ∀x, y ∈ X.

The diameter of a compact set X is

diam(X)
def
= max

x,y∈X
‖x− y‖

Smart Guy Theorem

zk − zk ≤ ε ∀k ≥ C(λ)
(
LD

ε

)2
,

C(λ) = 1
λ(1−λ)2(2−λ)

This rate is independent of the number of variables of the problem
The minimimum C(λ∗) = 4 when λ∗ = 0.2929

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 44 / 89

Oracle-Based Level Method

Convergence Rate

A function f : X→ R is Lipschitz continuous over its domain X if
∃L ∈ R such that

|f(y) − f(x)| ≤ L‖y− x‖ ∀x, y ∈ X.

The diameter of a compact set X is

diam(X)
def
= max

x,y∈X
‖x− y‖

Smart Guy Theorem

zk − zk ≤ ε ∀k ≥ C(λ)
(
LD

ε

)2
,

C(λ) = 1
λ(1−λ)2(2−λ)

This rate is independent of the number of variables of the problem
The minimimum C(λ∗) = 4 when λ∗ = 0.2929

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 44 / 89

Oracle-Based Level Method

Convergence Rate

A function f : X→ R is Lipschitz continuous over its domain X if
∃L ∈ R such that

|f(y) − f(x)| ≤ L‖y− x‖ ∀x, y ∈ X.

The diameter of a compact set X is

diam(X)
def
= max

x,y∈X
‖x− y‖

Smart Guy Theorem

zk − zk ≤ ε ∀k ≥ C(λ)
(
LD

ε

)2
,

C(λ) = 1
λ(1−λ)2(2−λ)

This rate is independent of the number of variables of the problem
The minimimum C(λ∗) = 4 when λ∗ = 0.2929

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 44 / 89

Oracle-Based Level Method

Convergence Rate

A function f : X→ R is Lipschitz continuous over its domain X if
∃L ∈ R such that

|f(y) − f(x)| ≤ L‖y− x‖ ∀x, y ∈ X.

The diameter of a compact set X is

diam(X)
def
= max

x,y∈X
‖x− y‖

Smart Guy Theorem

zk − zk ≤ ε ∀k ≥ C(λ)
(
LD

ε

)2
,

C(λ) = 1
λ(1−λ)2(2−λ)

This rate is independent of the number of variables of the problem
The minimimum C(λ∗) = 4 when λ∗ = 0.2929

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 44 / 89

Oracle-Based Level Method

Papers with Computational Experience

Some computational experience in Zverovich’s Ph.D. thesis:
[Zverovich, 2011]

Zverovich et al. [2012] have a nice, comprehensive comparison
between

Solving extensive form using simplex method and barrier method
LShaped-method (aggregated forms)
Regularized Decomposition
Level method
Trust region method

Who’s the winner?

Hard to pick. But I think level
method wins, simplex on
extensive form is slowest

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 45 / 89

Oracle-Based Level Method

Performance Profile [Zverovich et al., 2012]

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 46 / 89

Other Ideas for 2SP Dual Decomposition Methods

A Dual Idea

Dual Decomposition

Create copies of the first-stage decision variables for each scenario

minimize ∑
s∈S

psc
Txs + q

Tys

subject to

Axs = b

Tsxs +Wys = hs ∀s ∈ S
xs ≥ 0 ∀s ∈ S
ys ≥ 0 ∀s ∈ S

x1 = x2 = . . . = x|S|

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 47 / 89

Other Ideas for 2SP Dual Decomposition Methods

A Dual Idea

Dual Decomposition

Create copies of the first-stage decision variables for each scenario

minimize ∑
s∈S

psc
Txs + q

Tys

subject to

Axs = b

Tsxs +Wys = hs ∀s ∈ S
xs ≥ 0 ∀s ∈ S
ys ≥ 0 ∀s ∈ S

x1 = x2 = . . . = x|S|

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 47 / 89

Other Ideas for 2SP Dual Decomposition Methods

Relax Nonanticipativity

The constraints x0 = x1 = x2 = . . . = xs are called nonanticipativity
constraints.

We relax the nonanticipativity constraints, so the problem
decomposes by scenario, and then we do Lagrangian Relaxation:

max
λ1,...λs

∑
s∈S
Ds(λs)

where Ds(λs) = min
(xs,ys)∈Fs

{ps(c
Txs + q

Tys) + λ
T
s (xs − x0), }

and Fs = {(x, y) | Ax = b, Tsx+Wsy = hs, x ≥ 0, y ≥ 0}

Even Fancier

You can do Augmented Lagrangian or Progressive Hedging
[Rockafellar and Wets, 1991] by adding a quadratic “proximal”
term to the Lagrangian function

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 48 / 89

Other Ideas for 2SP Dual Decomposition Methods

Relax Nonanticipativity

The constraints x0 = x1 = x2 = . . . = xs are called nonanticipativity
constraints.

We relax the nonanticipativity constraints, so the problem
decomposes by scenario, and then we do Lagrangian Relaxation:

max
λ1,...λs

∑
s∈S
Ds(λs)

where Ds(λs) = min
(xs,ys)∈Fs

{ps(c
Txs + q

Tys) + λ
T
s (xs − x0), }

and Fs = {(x, y) | Ax = b, Tsx+Wsy = hs, x ≥ 0, y ≥ 0}

Even Fancier

You can do Augmented Lagrangian or Progressive Hedging
[Rockafellar and Wets, 1991] by adding a quadratic “proximal”
term to the Lagrangian function

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 48 / 89

Other Ideas for 2SP Bunching

Bunching

This idea is found in the works of Wets [1988] and Gassmann [1990]

If Ws =W,qs = q, ∀s = 1, . . . , S, then to evaluate φ(x) we must
solve |S| linear programs that differ only in their right hand side.

Therefore, the dual LPs differ only the objective function:

π∗s ∈ arg max
π

{πT (hs − Tsx̂) : π
TW ≤ q}.

Basic Idea

π∗s is feasible for all scenarios, and we have a dual feasible basis
matrix WB

For a new scenario (hr, Tr), with new objective (hr − Trx̂), if all
reduced costs are negative, then π∗s is also optimal for scenario r

Use dual simplex to solve scenario linear programs evaluating φ(x)

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 49 / 89

Other Ideas for 2SP Bunching

Bunching

This idea is found in the works of Wets [1988] and Gassmann [1990]

If Ws =W,qs = q, ∀s = 1, . . . , S, then to evaluate φ(x) we must
solve |S| linear programs that differ only in their right hand side.

Therefore, the dual LPs differ only the objective function:

π∗s ∈ arg max
π

{πT (hs − Tsx̂) : π
TW ≤ q}.

Basic Idea

π∗s is feasible for all scenarios, and we have a dual feasible basis
matrix WB

For a new scenario (hr, Tr), with new objective (hr − Trx̂), if all
reduced costs are negative, then π∗s is also optimal for scenario r

Use dual simplex to solve scenario linear programs evaluating φ(x)

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 49 / 89

Other Ideas for 2SP Interior Point Methods

Interior Point methods
cTx + p1q

T
1y1 + p2q

T
2y2 + · · · + psqTs ys

Ax = b
T1x + W1y1 = h1
T2x + W2y2 = h2

... +
. . .

...
TSx + WSys = hs
x ∈ X y1 ∈ Y y2 ∈ Y ys ∈ Y

Since extensive form is highly structured, then matrices of kkt system
that must be solved (via Newton-type methods) for interior point
methods can also be exploited.

He’s The Expert!

Definitely stick around for Jacek Gondzio’s final plenary “Recent
computational advances in solving very large stochastic programs”,
5PM on Friday.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 50 / 89

Other Ideas for 2SP Interior Point Methods

Interior Point methods
cTx + p1q

T
1y1 + p2q

T
2y2 + · · · + psqTs ys

Ax = b
T1x + W1y1 = h1
T2x + W2y2 = h2

... +
. . .

...
TSx + WSys = hs
x ∈ X y1 ∈ Y y2 ∈ Y ys ∈ Y

Since extensive form is highly structured, then matrices of kkt system
that must be solved (via Newton-type methods) for interior point
methods can also be exploited.

He’s The Expert!

Definitely stick around for Jacek Gondzio’s final plenary “Recent
computational advances in solving very large stochastic programs”,
5PM on Friday.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 50 / 89

Computing

Computing

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 51 / 89

Computing SMPS

SMPS Format

How do we specify a stochastic programming instance to the solver?

We could form the extensive form ourselves, but...

For really big problems, forming the extensive form is out of the
questions.
We need to just specify the random parts of the model.

We can do this using SMPS format

There is some recent research work in developed stochastic
programming support in an AML.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 52 / 89

Computing SMPS

Modeling Language Support

AMPL: (www.ampl/com)

Talk by Gautum Mitra: Formulation and solver support for
optimisation under uncertainty, Thursday afternoon, Room 3.
SML: Colombo et al. [2009]. Adds keywords extending AMPL that
encode problem structure.

GAMS: (www.gams.com). Uses GAMS EMP (Extended Math
Programming) framework. Manual at
http://www.gams.com/dd/docs/solvers/empsp.pdf

LINDO: (www.lindo.com). Has support for built-in sampling4

procedures.

MPL: (www.maximalsoftware.com). Has built-in decomposition
solvers. Some introductory slides at
http://www.slideshare.net/bjarnimax/seminar-stochastic

4We’ll talk about sampling shortly
Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 53 / 89

www.ampl/com
www.gams.com
http://www.gams.com/dd/docs/solvers/empsp.pdf
www.lindo.com
www.maximalsoftware.com
http://www.slideshare.net/bjarnimax/seminar-stochastic

Computing SMPS

SMPS Components

Core file

Like MPS file for “base” instance

Time file

Specifies the time dependence structure

Stoch file

Specifies the randomness

SMPS References

Birge et al. [1987], Gassmann and Schweitzer [2001]

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 54 / 89

Computing SMPS

SMPS Components

Core file

Like MPS file for “base” instance

Time file

Specifies the time dependence structure

Stoch file

Specifies the randomness

SMPS References

Birge et al. [1987], Gassmann and Schweitzer [2001]

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 54 / 89

Computing SMPS

SMPS Core File

Like an MPS file specifying a “base” scenario

Must permute the rows and columns so that the time indexing is
sequential. (Columns for stage j listed before columns for stage j+ 1).

min x1 + xs + λ
∑
s∈S

ps(y1s + y2s)

ω1sx1 + x2 + y1s ≥ 7 ∀s = 1, 2, 3
ω2sx1 + x2 + y2s ≥ 4 ∀s = 1, 2, 3
x1, x2, y1s, y2s ≥ 0 ∀s = 1, 2, 3

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 55 / 89

Computing SMPS

SMPS Core File

Like an MPS file specifying a “base” scenario

Must permute the rows and columns so that the time indexing is
sequential. (Columns for stage j listed before columns for stage j+ 1).

min x1 + xs + λ
∑
s∈S

ps(y1s + y2s)

ω1sx1 + x2 + y1s ≥ 7 ∀s = 1, 2, 3
ω2sx1 + x2 + y2s ≥ 4 ∀s = 1, 2, 3
x1, x2, y1s, y2s ≥ 0 ∀s = 1, 2, 3

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 55 / 89

Computing SMPS

little.cor

NAME little

ROWS

G R0001

G R0002

N R0003

COLUMNS

C0001 R0001 2.8276271688

C0001 R0002 0.4599153687

C0001 R0003 1

C0002 R0001 1

C0002 R0002 1

C0002 R0003 1

C0003 R0001 1

C0003 R0003 5

C0004 R0002 1

C0004 R0003 5

RHS

B R0001 7

B R0002 4

ENDATA

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 56 / 89

Computing SMPS

little.tim

Specify which row/column starts each time period.

Must be sequential!

*23456789 123456789 123456789 123456789 123456789

TIME little

PERIODS IMPLICIT

C0001 R0001 T1

C0003 R0001 T2

ENDATA

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 57 / 89

Computing SMPS

Stoch File

BLOCKS

Specify a “block” of parameters that changes together

INDEP

Specify that all the parameters you are specifying are all independent
random variables

SCENARIO

Specify a “base” scenario
Specify what things change and when...

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 58 / 89

Computing SMPS

litle.sto

*23456789 123456789

STOCH little

*23456789 123456789 123456789 123456789 123456789 123456789

BLOCKS DISCRETE

BL BLOCK1 T2 0.3333333

C0001 R0001 1.0

C0001 R0002 0.3333333

BL BLOCK1 T2 0.3333333

C0001 R0001 2.5

C0001 R0002 0.6666666

BL BLOCK1 T2 0.3333333

C0001 R0001 4.0

C0001 R0002 1.0

ENDATA

*23456789 123456789

STOCH little

*23456789 123456789 123456789 123456789 123456789 123456789

INDEP DISCRETE

C0001 R0001 1.0 0.5

C0001 R0001 4.0 0.5

C0001 R0002 0.333 0.5

C0001 R0002 1.0 0.5

ENDATA

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 59 / 89

Computing Utility Libraries

Some Utility Libraries

If you need to read and write SMPS files and manipulate and query
the instance as part of build an algorithm in a programming language,
you can try the following libraries

PySP: https://software.sandia.gov/trac/coopr/wiki/PySP
[Watson et al., 2012]

Based on Pyomo [Hart et al., 2011]
Also allows to build models
Some algorithmic support, especially for progressive hedging type
algorithms
Watson and Woodruff [2011]

Coin-SMI: http://www.coin-or.org/projects/Smi.xml
From Coin-OR collection of open source code.

SUTIL: http://coral.ie.lehigh.edu/~sutil/
A little bit dated, but being refectored now
Has implemented methods for sampling from distribution specified in
SMPS files

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 60 / 89

https://software.sandia.gov/trac/coopr/wiki/PySP
http://www.coin-or.org/projects/Smi.xml
http://coral.ie.lehigh.edu/~sutil/

Computing Utility Libraries

Some Utility Libraries

If you need to read and write SMPS files and manipulate and query
the instance as part of build an algorithm in a programming language,
you can try the following libraries

PySP: https://software.sandia.gov/trac/coopr/wiki/PySP
[Watson et al., 2012]

Based on Pyomo [Hart et al., 2011]
Also allows to build models
Some algorithmic support, especially for progressive hedging type
algorithms
Watson and Woodruff [2011]

Coin-SMI: http://www.coin-or.org/projects/Smi.xml
From Coin-OR collection of open source code.

SUTIL: http://coral.ie.lehigh.edu/~sutil/
A little bit dated, but being refectored now
Has implemented methods for sampling from distribution specified in
SMPS files

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 60 / 89

https://software.sandia.gov/trac/coopr/wiki/PySP
http://www.coin-or.org/projects/Smi.xml
http://coral.ie.lehigh.edu/~sutil/

Computing Parallel Computation

Parallelizing

In decomposition algorithms, the evaluation of φ(x) — solving the
different LP’s, can be done independently.

If you have K computers, send them each one of |S|/K linear programs,
and your evaluation of φ(x) will be completed K times faster.

Factors Affecting Efficiency

Synchronization: Waiting for all parallel machines to complete

Solving the master problem – worker machines waiting for master
to complete

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 61 / 89

Computing Parallel Computation

Parallelizing

In decomposition algorithms, the evaluation of φ(x) — solving the
different LP’s, can be done independently.

If you have K computers, send them each one of |S|/K linear programs,
and your evaluation of φ(x) will be completed K times faster.

Factors Affecting Efficiency

Synchronization: Waiting for all parallel machines to complete

Solving the master problem – worker machines waiting for master
to complete

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 61 / 89

Computing Parallel Computation

Worker Usage

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r

of
 Id

le
 W

or
ke

rs

t (sec.)

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 62 / 89

Computing Parallel Computation

Stamp Out Synchronicity!

We start a new iteration only after all LPs have been evaluated

In cloud/heterogeneous computing environments, different processors
act at different speeds, so many may wait idle for the “slowpoke”
Even worse, in many cloud environments, machines can be reclaimed
before completing their tasks.

Distributed Computing Fact

Asynchronous methods are preferred for traditional parallel computing
environments. They are nearly required for heterogenous and dynamic
environments!

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 63 / 89

Computing Parallel Computation

ATR – An Asynchronous Trust Region Method

Keep a “basket” B of trial points for which we are evaluating the
objective function

Make decision on whether or accept new iterate xk+1 after entire
f(xk) is computed

Convergence theory and cut deletion theory is similar to the
synchronous algorithm

Populate the basket quickly by initially solving the master problem
after only α% of the scenario LPs have been solved

Greatly reduces the synchronicity requirements

Might be doing some “unnecessary” work – the candidiate points
might be better if you waited for complete information from the
preceeding iterations

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 64 / 89

Computing Parallel Computation

The World’s Largest LP

Storm – A cargo flight scheduling problem (Mulvey and Ruszczyński)

In 2000, we aimed to solve an instance with 10,000,000 scenarios

x ∈ R121, y(ωs) ∈ R1259

The deterministic equivalent is of size

A ∈ R985,032,889×12,590,000,121

Cuts/iteration 1024, # Chunks 1024, |B| = 4
Started from an N = 20000 solution, ∆0 = 1

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 65 / 89

Computing Parallel Computation

The Super Storm Computer

Number Type Location

184 Intel/Linux Argonne

254 Intel/Linux New Mexico

36 Intel/Linux NCSA

265 Intel/Linux Wisconsin
88 Intel/Solaris Wisconsin
239 Sun/Solaris Wisconsin

124 Intel/Linux Georgia Tech
90 Intel/Solaris Georgia Tech
13 Sun/Solaris Georgia Tech

9 Intel/Linux Columbia U.
10 Sun/Solaris Columbia U.

33 Intel/Linux Italy (INFN)

1345

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 66 / 89

Computing Parallel Computation

TA-DA!!!!!

Wall clock time 31:53:37
CPU time 1.03 Years

Avg. # machines 433
Max # machines 556
Parallel Efficiency 67%

Master iterations 199
CPU Time solving the master problem 1:54:37

Maximum number of rows in master problem 39647

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 67 / 89

Computing Parallel Computation

Number of Workers

0

100

200

300

400

500

600

0 20000 40000 60000 80000 100000 120000 140000

#w
or

ke
rs

Sec.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 68 / 89

Sampling and Monte Carlo

Monte Carlo Methods

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 69 / 89

Sampling and Monte Carlo

The Ugly Truth

Imagine the following (real) problem. A Telecom company wants to
expand its network in a way in which to meet an unknown (random)
demand.

There are 86 unknown demands. Each demand is independent and
may take on one of five values.

S = |Ω| = Π86k=1(5) = 5
86 = 4.77× 1072

The number of subatomic particles in the universe.

How do we solve a problem that has more variables and more
constraints than the number of subatomic particles in the universe?

The answer is we can’t!

We solve an approximating problem obtained through sampling.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 70 / 89

Sampling and Monte Carlo

The Ugly Truth

Imagine the following (real) problem. A Telecom company wants to
expand its network in a way in which to meet an unknown (random)
demand.

There are 86 unknown demands. Each demand is independent and
may take on one of five values.

S = |Ω| = Π86k=1(5) = 5
86 = 4.77× 1072

The number of subatomic particles in the universe.

How do we solve a problem that has more variables and more
constraints than the number of subatomic particles in the universe?

The answer is we can’t!

We solve an approximating problem obtained through sampling.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 70 / 89

Sampling and Monte Carlo

Monte Carlo Methods

(∗) min
x∈X

{f(x) ≡ EPF(x,ω) ≡
∫
Ω

F(x,ω)dP(ω)}

Most of the theory presented holds for (*)—A very general SP
problem

Naturally it holds for our favorite SP problem:

X
def
= {x |Ax = b, x ≥ 0}

f(x) ≡ cTx+ E{Q(x,ω)}
Q(x,ω) ≡ miny≥0{q(ω)Ty | Wy = h(ω) − T(ω)x}

The Dirty Secret

Evaluating f(x) is completely intractable!∫ ∫ ∫
· · ·
∫ ∫ ∫ ∫

· · ·

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 71 / 89

Sampling and Monte Carlo

Monte Carlo Methods

(∗) min
x∈X

{f(x) ≡ EPF(x,ω) ≡
∫
Ω

F(x,ω)dP(ω)}

Most of the theory presented holds for (*)—A very general SP
problem

Naturally it holds for our favorite SP problem:

X
def
= {x |Ax = b, x ≥ 0}

f(x) ≡ cTx+ E{Q(x,ω)}
Q(x,ω) ≡ miny≥0{q(ω)Ty | Wy = h(ω) − T(ω)x}

The Dirty Secret

Evaluating f(x) is completely intractable!∫ ∫ ∫
· · ·
∫ ∫ ∫ ∫

· · ·

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 71 / 89

Sampling and Monte Carlo

Sampling Methods

“Interior” Sampling Methods—Sample while solving

LShaped Method [Dantzig and Infanger, 1991]

Stochastic Decomposition [Higle and Sen, 1991]

Stochastic Approximation Methods

Stochastic Quasi-Gradient [Ermoliev, 1983]
Mirror-Descent Stochastic Approximation [Nemirovski et al., 2009]

“Exterior” sampling methods—Sample. Then Solve.

Sample Average Approximation

Key—Obtain (Statistical) bounds on solution quality

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 72 / 89

Sampling and Monte Carlo

Sampling Methods

“Interior” Sampling Methods—Sample while solving

LShaped Method [Dantzig and Infanger, 1991]

Stochastic Decomposition [Higle and Sen, 1991]

Stochastic Approximation Methods

Stochastic Quasi-Gradient [Ermoliev, 1983]
Mirror-Descent Stochastic Approximation [Nemirovski et al., 2009]

“Exterior” sampling methods—Sample. Then Solve.

Sample Average Approximation

Key—Obtain (Statistical) bounds on solution quality

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 72 / 89

Sampling and Monte Carlo

Sample Average Approximation

Instead of solving (*), we solve an approximating problem.

Let ξ1, . . . , ξN be N realizations of the random variable ξ:

min
x∈S

{fN(x) ≡ N−1
N∑
j=1

F(x, ξj)}.

fN(x) is just the sample average function

For any x, we consider fN(x) a random variable, as it depends on the
random sample

Since ξj drawn from P, fN(x) is an unbiased estimator of f(x)

E[fN(x)] = f(x)

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 73 / 89

Sampling and Monte Carlo

Lower Bounds

v∗ = min
x∈S

{f(x) ≡ EPF(x,ω) ≡
∫
Ω

F(x,ω)p(ω)dω}

For some sample ξ1, . . . , ξN, let

vN = min
x∈S

{fN(x) ≡ N−1
N∑
j=1

F(x, ξj)}.

Thm:

E[vN] ≤ v∗

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 74 / 89

Sampling and Monte Carlo

Proof

min
x∈X

N−1
N∑
j=1

F(x, ξj) ≤ N−1
N∑
j=1

F(x, ξj) ∀x ∈ X ⇔
E

min
x∈X

N−1
N∑
j=1

F(x, ξj)

 ≤ E

N−1
N∑
j=1

F(x, ξj)

 ∀x ∈ X⇔
E [vN] ≤ E

N−1
N∑
j=1

F(x, ξj)

 ∀x ∈ X

≤ min
x∈X

E

N−1
N∑
j=1

F(x, ξj)

 = v∗

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 75 / 89

Sampling and Monte Carlo

Next?

Now we need to somehow estimate E[vn]
Idea: Generate M independent samples, ξ1,j, . . . , ξN,j, j = 1, . . . ,M,
each of size N, and solve the corresponding SAA problems

min
x∈X

{
f
j
N(x) := N

−1
N∑
i=1

F(x, ξi,j)

}
, (1)

for each j = 1, . . . ,M. Let v jN be the optimal value of problem (1),
and compute

LN,M ≡
1

M

M∑
j=1

v
j
N

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 76 / 89

Sampling and Monte Carlo

Lower Bounds

The estimate LN,M is an unbiased estimate of E[vN].
By our last theorem, it provides a statistical lower bound for the true
optimal value v∗.

When the M batches ξ1,j, ξ2,j, . . . , ξN,j, j = 1, . . . ,M, are i.i.d.
(although the elements within each batch do not need to be i.i.d.)
have by the Central Limit Theorem that

√
M [LN,M − E(vN)]→ N (0, σ2L)

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 77 / 89

Sampling and Monte Carlo

Confidence Intervals

I can estimate the variance of my estimate LM,N as

s2L(M) ≡ 1

M− 1

M∑
j=1

(
v
j
N − LN,M

)2
.

Defining zα to satisfy P{N(0, 1) ≤ zα} = 1− α, and replacing σL by
sL(M), we can obtain an approximate (1− α)-confidence interval for
E[vN] to be [

LN,M −
zαsL(M)√

M
,LN,M +

zαsL(M)√
M

]

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 78 / 89

Sampling and Monte Carlo

Upper Bounds

v∗ = min
x∈X

{f(x)
def
= EPF(x;ω)

def
=

∫
Ω

F(x;ω)p(ω)dω}

Quick, Someone prove...

f(x̂) ≥ v∗ ∀x ∈ X

How can we estimate f(x̂)?

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 79 / 89

Sampling and Monte Carlo

Estimating f(x̂)

Generate T independent batches of samples of size N̄, denoted by
ξ1,j, ξ2,j, . . . , ξN̄,j, j = 1, 2, . . . , T , where each batch has the unbiased
property, namely

E

f j
N̄
(x) := N̄−1

N̄∑
i=1

F(x, ξi,j)

 = f(x), for all x ∈ X.

We can then use the average value defined by

UN̄,T (x̂) := T
−1

T∑
j=1

f
j

N̄
(x̂)

as an estimate of f(x̂).

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 80 / 89

Sampling and Monte Carlo

More Confidence Intervals

By applying the Central Limit Theorem again, we have that

√
T [UN̄,T (x̂) − f(x̂)]⇒ N(0, σ2U(x̂)), as T →∞,

where σ2U(x̂) := Var
[
fN̄(x̂)

]
. We can estimate σ2U(x̂) by the sample

variance estimator s2U(x̂; T) defined by

s2U(x̂; T) :=
1

T − 1

T∑
j=1

[
f
j

N̄
(x̂) −UN̄,T (x̂)

]2
.

By replacing σ2U(x̂) with s2U(x̂; T), we can proceed as above to obtain a
(1− α)-confidence interval for f(x̂):[

UN̄,T (x̂) −
zαsU(x̂; T)√

T
,UN̄,T (x̂) +

zαsU(x̂; T)√
T

]
.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 81 / 89

Sampling and Monte Carlo

Putting it all together

vN is the optimal solution value for the sample average function:

vN ≡ minx∈S

{
fN(x) := N

−1
∑N
j=1 F(x,ω

j)
}

Estimate E(vN) as Ê(vN) = LN,M =M−1
∑M
j=1 v

j
N

Solve M stochastic LP’s, each of sampled size N.

fN(x) is the sample average function

Draw ω1, . . .ωN from P
fN(x) ≡ N−1

∑N
j=1 F(x,ω

j)
For Stochastic LP w/recourse ⇒ solve N LP’s.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 82 / 89

Sampling and Monte Carlo

Recapping Theorems

Thm. E(vN) ≤ v∗ ≤ f(x) ∀x

Thm. f̂N′(x̂) − E(vN)→ f(x̂) − v∗, as N,M,N′ →∞
We are mostly interested in estimating the quality of a given solution
x̂. This is f(x̂) − v∗.

f̂N′(x̂) computed by solving N′ independent LPs.

Ê(vN) computed by solving M independent stochastic LPs.

Independent ⇒ no synchronization ⇒ easy to do in parallel

Independent ⇒ can construct confidence intervals around the
estimates

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 83 / 89

Sampling and Monte Carlo

An experiment

M times – Solve a stochastic sampled approximation of size N.
(Thus obtaining an estimate of E(vN)).

For each of the M solutions x1, . . . xM, estimate f(x̂) by solving N′

LP’s.

Test Instances

Name Application |Ω| (m1, n1) (m2, n2)

LandS HydroPower Planning 106 (2,4) (7,12)

gbd Fleet Routing 6.46× 105 (?,?) (?,?)

storm Cargo Flight Scheduling 6× 1081 (185, 121) (?,1291)

20term Vehicle Assignment 1.1× 1012 (1,5) (71,102)

ssn Telecom. Network Design 1070 (1,89) (175,706)

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 84 / 89

Sampling and Monte Carlo

Convergence of Optimal Solution Value

9 ≤M ≤ 12, N′ = 106

Monte Carlo Sampling

Instance N = 50 N = 100 N = 500 N = 1000 N = 5000
20term 253361 254442 254025 254399 254324 254394 254307 254475 254341 254376

gbd 1678.6 1660.0 1595.2 1659.1 1649.7 1655.7 1653.5 1655.5 1653.1 1655.4
LandS 227.19 226.18 226.39 226.13 226.02 226.08 225.96 226.04 225.72 226.11
storm 1550627 1550321 1548255 1550255 1549814 1550228 1550087 1550236 1549812 1550239

ssn 4.108 14.704 7.657 12.570 8.543 10.705 9.311 10.285 9.982 10.079

Latin Hypercube Sampling

Instance N = 50 N = 100 N = 500 N = 1000 N = 5000
20term 254308 254368 254387 254344 254296 254318 254294 254318 254299 254313

gbd 1644.2 1655.9 1655.6 1655.6 1655.6 1655.6 1655.6 1655.6 1655.6 1655.6
LandS 222.59 222.68 225.57 225.64 225.65 225.63 225.64 225.63 225.62 225.63
storm 1549768 1549879 1549925 1549875 1549866 1549873 1549859 1549874 1549865 1549873

ssn 10.100 12.046 8.904 11.126 9.866 10.175 9.834 10.030 9.842 9.925

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 85 / 89

Sampling and Monte Carlo

20term Convergence. Monte Carlo Sampling

251500

252000

252500

253000

253500

254000

254500

255000

255500

10 100 1000 10000

V
al

ue

N

Lower Bound
Upper Bound

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 86 / 89

Sampling and Monte Carlo

ssn Convergence. Monte Carlo Sampling

2

4

6

8

10

12

14

16

18

10 100 1000 10000

V
al

ue

N

Lower Bound
Upper Bound

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 87 / 89

Sampling and Monte Carlo

storm Convergence. Monte Carlo Sampling

1.544e+06

1.545e+06

1.546e+06

1.547e+06

1.548e+06

1.549e+06

1.55e+06

1.551e+06

1.552e+06

1.553e+06

1.554e+06

1.555e+06

10 100 1000 10000

V
al

ue

N

Lower Bound
Upper Bound

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 88 / 89

Sampling and Monte Carlo

gbd Convergence. Monte Carlo Sampling

1500

1550

1600

1650

1700

1750

1800

10 100 1000 10000

V
al

ue

N

Lower Bound
Upper Bound

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 89 / 89

Bibliography

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 1 / 14

References

J. R. Birge and F. V. Louveaux. A multicut algorithm for two-stage
stochastic linear programs. European Journal of Operations Research,
34:384–392, 1988.

J. R. Birge, M. A. H. Dempster, H. I. Gassmann, E. A. Gunn, and A. J.
King. A standard input format for multiperiod stochastic linear
programs. COAL Newsletter, 17:1–19, 1987.

J. R. Birge, C. J. Donohue, D. F. Holmes, and O. G. Svintsiski. A parallel
implementation of the nested decomposition algorithm for multistage
stochastic linear programs. Mathematical Programming, 75:327–352,
1996.

M. Colombo, A. Grothey, J. Hogg, K. Woodsend, and J. Gondzio. A
structure-conveying modelling language for mathematical and stochastic
programming. Mathematical Programming Computation, 1(4):223–247,
2009.

G. Dantzig and G. Infanger. Large-scale stochastic linear programs —
Importance sampling and Bender’s decomposition. In C. Brezinski and
U. Kulisch, editors, Computational and Applied Mathematics I (Dublin,
1991), pages 111–120. North-Holland, Amsterdam, 1991.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 1 / 14

References

Y. Ermoliev. Stochastic quasi-gradient methods and their application to
systems optimization. Stochastics, 4:1–37, 1983.

H. I. Gassmann. MSLiP: A computer code for the multistage stochastic
linear programming problem. Mathematical Programming, 47:427–423,
1990.

H.I. Gassmann and E. Schweitzer. A comprehensive input format for
stochastic linear programs. Annals of Operations Research, 104:89–125,
2001.

A. Gavironski. Implementation of stochastic quasigradient methods. In
Numerical Techniques for Stochastic Optimization. Springer-Verlag,
1988.

W. E. Hart, J.-P. Watson, and D. L. Woodruff. Pyomo: Modeling and
solving mathematical programs in Python. Mathematical Programming
Computation, 3(3):219–260, 2011.

J. L. Higle and S. Sen. Stochastic decomposition: An algorithm for two
stage linear programs with recourse. Mathematics of Operations
Research, 16(3):650–669, 1991.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 1 / 14

References

U. Janjarassuk. Using Computational Grids for Effective Solution of
Stochastic Programs. PhD thesis, Department of Industrial and Systems
Engineering, Lehigh University, 2009.

G. Lan, A. Nemirovski, and A. Shapiro. Validation analysis of mirror
descent stochastic approximation method. Mathematical Programming,
pages 1–34, 2011.

C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. New variants of bundle
methods. Mathematical Programming, 69:111–147, 1995.

J. T. Linderoth and S. J. Wright. Implementing a decomposition algorithm
for stochastic programming on a computational grid. Computational
Optimization and Applications, 24:207–250, 2003. Special Issue on
Stochastic Programming.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on
Optimization, 19:1574–1609, 2009.

H. Robbins and S. Monro. On a stochastic approximation method. Annals
of Mathematical Statistics, 22:400–407, 1951.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 1 / 14

References

R.T. Rockafellar and Roger J.-B. Wets. Scenarios and policy aggregation
in optimization under uncertainty. Mathematics of Operations Research,
16(1):119–147, 1991.

A. Ruszczyński. A regularized decomposition for minimizing a sum of
polyhedral functions. Mathematical Programming, 35:309–333, 1986.

A. Ruszczyński. Parallel decomposition of multistage stochastic
programming problems. Mathematical Programming, 58:201–228, 1993.

S. Trukhanov, L. Ntaimo, and A. Schaefer. Adaptive multicut aggregation
for two-stage stochastic linear programs with recourse. European
Journal of Operational Research, 206:395–406, 2010.

J.-P. Watson and D. L. Woodruff. Progressive hedging innovations for a
class of stochastic mixed-integer resource allocation problems.
Computational Management Science, 8(4):355–370, 2011.

J.-P. Watson, D. L. Woodruff, and W. E. Hart. Pysp: Modeling and
solving stochastic programs in Python. Mathematical Programming
Computation, 4(2):109–149, 2012.

R. J. B. Wets. Large-scale linear programming techniques in stochastic
Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 1 / 14

Bibliography

programming. In Numerical Techniques for Stochastic Optimization.
Springer-Verlag, 1988.

V. Zverovich. Modelling and Solution Methods for Stochastic
Optimization. PhD thesis, Brunel university, 2011.

V. Zverovich, C. I. Fábián, E. F. D. Ellison, and G. Mitra. A
computational study of a solver system for processing two-stage
stochastic LPs with enhanced Benders decomposition. Mathematical
Programming Computation, 4(3):21–238, 2012.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 2 / 14

Bibliography

Miscellaneous Topics

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 2 / 14

Interior Sampling Stochastic Decomposition

Stochastic Decomposition

A primary initial reference is Higle and Sen [1991]

0. Let k = 1, xk = 0, V = ∅
1a. Draw random sample ωk, and solve...

πk = arg max
π∈<m

{πT (h(ω̄k) − T((ω̄k)x
k)|WTπ ≤ q}

1b. V = V ∪ πk. For j = 1, 2, . . . k− 1, solve

πj = arg max
π∈V

{
πT ((h(ω̄j) − T((ω̄j)x

k)
}

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 3 / 14

Interior Sampling Stochastic Decomposition

Stochastic Decomposition

2a. Create cut as...

θ ≥ 1/k
k∑
j=1

πTj (h(ωj) − T(ωj)xk)

Call the cut (αk + β
T
kx).

2b. For j = 1, 2, . . . , k− 1, Phase Out old cuts as

αk + β
T
kx =

k− 1

k
(αk−1 + β

T
k−1x).

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 4 / 14

Interior Sampling Stochastic Decomposition

Stochastic Decomposition

3. Solve Master Problem

(xk, θk) = arg min
x∈X

cTx+ θ

subject to
θ ≥ αk + βkx ∀k = 1, 2, . . .

Go to 1.

There is some subsequence of the xk → x∗

Typically people use some sort of statistical based stopping criteria

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 5 / 14

Interior Sampling Stochastic Approximation

Stochastic Approximation

Goes back to (seminal) work of Robbins and Monro [1951].

A class of (simple) iterative methods, where iterations take the form

xk+1 = xk − αkη
k.

−ηk is a direction satisfying some property. (e.g. E[−ηk] is a true
descent direction for f(x))

αk chosen such that the sequence {αk} converges to zero, but not too
quickly: ∞∑

k=1

αk =∞, ∞∑
k=0

α2k <∞.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 6 / 14

Interior Sampling Stochastic Approximation

Stochastic Approximation

Goes back to (seminal) work of Robbins and Monro [1951].

A class of (simple) iterative methods, where iterations take the form

xk+1 = xk − αkη
k.

−ηk is a direction satisfying some property. (e.g. E[−ηk] is a true
descent direction for f(x))

αk chosen such that the sequence {αk} converges to zero, but not too
quickly: ∞∑

k=1

αk =∞, ∞∑
k=0

α2k <∞.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 6 / 14

Interior Sampling Stochastic Approximation

Stochastic Approximation

Goes back to (seminal) work of Robbins and Monro [1951].

A class of (simple) iterative methods, where iterations take the form

xk+1 = xk − αkη
k.

−ηk is a direction satisfying some property. (e.g. E[−ηk] is a true
descent direction for f(x))

αk chosen such that the sequence {αk} converges to zero, but not too
quickly: ∞∑

k=1

αk =∞, ∞∑
k=0

α2k <∞.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 6 / 14

Interior Sampling Stochastic Approximation

Stochastic Quasi-Gradient

If f(x) is convex, we can use a (negative) direction ηk that satisfies:

E[ηk | x0, x1, . . . , xk] = ∇f(xk) + bk,

where {bk} is such that ‖bk‖→ 0.

A primary reference is Ermoliev [1983].

There is some numerical experience reported in Gavironski [1988].

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 7 / 14

Interior Sampling Stochastic Approximation

Mirror Descent

Pioneered in paper by Nemirovski et al. [2009]

Instead of using iteration like

xk+1 = xk − αkη
k.

use
xk+1 = Pxk(βη

k),

where ηk is an unbiased estimator of ∇(f(xk))
Px(·) is the so-called prox-mapping:

Px(y) = arg min
z∈X

yT (z− x) + V(x, z),

where V(x, z) = ω(z) −ω(x) −∇ω(x)T (z− x), and ω(x) is a
smooth (strongly) convex function (like ‖ · ‖2).
Some very nice computational results are analysis is given in Lan
et al. [2011].

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 8 / 14

Multistage Formulation and Algorithm

Multistage Decision Making

ξ1

x1

ξ2

x2

ξ3

xT−1

ξT

xT

Random vectors
ξ1 ∈ Rn1 , ξ2 ∈
Rn2 , . . . , ξT ∈ RnT

Make sequence of
decisions x1 ∈ X1, x2 ∈
X2, . . . , xT ∈ XT .

Risk Neutral: We aim to optimize the expected value of our current
decision xt

Linear: Assume Xt are polyhedra

Discrete: Assume ξt are drawn from a discrete distribution.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 9 / 14

Multistage Formulation and Algorithm

Multistage Decision Making

ξ1

x1

ξ2

x2

ξ3

xT−1

ξT

xT

Random vectors
ξ1 ∈ Rn1 , ξ2 ∈
Rn2 , . . . , ξT ∈ RnT

Make sequence of
decisions x1 ∈ X1, x2 ∈
X2, . . . , xT ∈ XT .

Risk Neutral: We aim to optimize the expected value of our current
decision xt

Linear: Assume Xt are polyhedra

Discrete: Assume ξt are drawn from a discrete distribution.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 9 / 14

Multistage Formulation and Algorithm

Scenario Tree

N: Set of nodes in the tree

ρ(n): Unique predecessor of node
n in the tree

S(n): Set of successor nodes of n

qn: Probability that the sequence
of events leading to node n occurs

xn: Decision taken at node n

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 10 / 14

Multistage Formulation and Algorithm

Scenario Tree

xn

N: Set of nodes in the tree

ρ(n): Unique predecessor of node
n in the tree

S(n): Set of successor nodes of n

qn: Probability that the sequence
of events leading to node n occurs

xn: Decision taken at node n

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 10 / 14

Multistage Formulation and Algorithm

Scenario Tree

xn
xρ(n)

x0
ξ̂1

ξ̂2

N: Set of nodes in the tree

ρ(n): Unique predecessor of node
n in the tree

S(n): Set of successor nodes of n

qn: Probability that the sequence
of events leading to node n occurs

xn: Decision taken at node n

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 10 / 14

Multistage Formulation and Algorithm

Multistage Stochastic Programming

Deterministic Equivalent

zSP = min

{∑
n∈N

qnc
T
nxn

∣∣ Tnxρ(n) +Wnxn = hn ∀n ∈ N

}

Value Function of node n

Qn(xρ(n))
def
= min

xn

cTnxn +
∑

m∈S(n)

q̂mnQm(xn) | Wnxn = hn − Tnxρ(n)


q̂mn: conditional probability of node n given node m

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 11 / 14

Multistage Formulation and Algorithm

Multistage Stochastic Programming

Deterministic Equivalent

zSP = min

{∑
n∈N

qnc
T
nxn

∣∣ Tnxρ(n) +Wnxn = hn ∀n ∈ N

}

Value Function of node n

Qn(xρ(n))
def
= min

xn

cTnxn +
∑

m∈S(n)

q̂mnQm(xn) | Wnxn = hn − Tnxρ(n)


q̂mn: conditional probability of node n given node m

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 11 / 14

Multistage Formulation and Algorithm

Nested Decomposition

0: Root node of the scenario tree

x0: Initial state of the system

Recursive Formulation

zSP = Q0(x0)

Cost to go: Gn(x)
def
=
∑
m∈S(n) q̂mnQm(x)

Mk
n(x): Lower bound on Gn(x) in iteration k

Qn(xρ(n)) ≥ min
xn

{
cTnxn +Mk

n(xn)
∣∣ Wnxn = hn − Tnxρ(n)

}
((MLPn))

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 12 / 14

Multistage Formulation and Algorithm

Nested Decomposition

0: Root node of the scenario tree

x0: Initial state of the system

Recursive Formulation

zSP = Q0(x0)

Cost to go: Gn(x)
def
=
∑
m∈S(n) q̂mnQm(x)

Mk
n(x): Lower bound on Gn(x) in iteration k

Qn(xρ(n)) ≥ min
xn

{
cTnxn +Mk

n(xn)
∣∣ Wnxn = hn − Tnxρ(n)

}
((MLPn))

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 12 / 14

Multistage Formulation and Algorithm

Action Pictures

1 Solve MLP0 to get x0. Send
policy forward

2 Solve each MLPS0 using x0 and
realizations ξ1

3 Continue forward to end

4 Go backwards. Send cuts from
children back to parent. Update
MLPn and resolve.

5 Lather, Rinse, Repeat.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 13 / 14

Multistage Formulation and Algorithm

Action Pictures

x0

1 Solve MLP0 to get x0. Send
policy forward

2 Solve each MLPS0 using x0 and
realizations ξ1

3 Continue forward to end

4 Go backwards. Send cuts from
children back to parent. Update
MLPn and resolve.

5 Lather, Rinse, Repeat.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 13 / 14

Multistage Formulation and Algorithm

Action Pictures

ξ1

x0

1 Solve MLP0 to get x0. Send
policy forward

2 Solve each MLPS0 using x0 and
realizations ξ1

3 Continue forward to end

4 Go backwards. Send cuts from
children back to parent. Update
MLPn and resolve.

5 Lather, Rinse, Repeat.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 13 / 14

Multistage Formulation and Algorithm

Action Pictures

ξ1

ξ2

x0

1 Solve MLP0 to get x0. Send
policy forward

2 Solve each MLPS0 using x0 and
realizations ξ1

3 Continue forward to end

4 Go backwards. Send cuts from
children back to parent. Update
MLPn and resolve.

5 Lather, Rinse, Repeat.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 13 / 14

Multistage Formulation and Algorithm

Action Pictures

ξ1

ξ2
ξ3

x0

1 Solve MLP0 to get x0. Send
policy forward

2 Solve each MLPS0 using x0 and
realizations ξ1

3 Continue forward to end

4 Go backwards. Send cuts from
children back to parent. Update
MLPn and resolve.

5 Lather, Rinse, Repeat.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 13 / 14

Multistage Formulation and Algorithm

Action Pictures

(Fkn[j], f
k
n[j])

x0

1 Solve MLP0 to get x0. Send
policy forward

2 Solve each MLPS0 using x0 and
realizations ξ1

3 Continue forward to end

4 Go backwards. Send cuts from
children back to parent. Update
MLPn and resolve.

5 Lather, Rinse, Repeat.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 13 / 14

Multistage Formulation and Algorithm

Action Pictures

(Fkn[j], f
k
n[j])

x0

1 Solve MLP0 to get x0. Send
policy forward

2 Solve each MLPS0 using x0 and
realizations ξ1

3 Continue forward to end

4 Go backwards. Send cuts from
children back to parent. Update
MLPn and resolve.

5 Lather, Rinse, Repeat.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 13 / 14

Multistage Formulation and Algorithm

Action Pictures

(Fkn[j], f
k
n[j])

x0

1 Solve MLP0 to get x0. Send
policy forward

2 Solve each MLPS0 using x0 and
realizations ξ1

3 Continue forward to end

4 Go backwards. Send cuts from
children back to parent. Update
MLPn and resolve.

5 Lather, Rinse, Repeat.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 13 / 14

Multistage Formulation and Algorithm

Action Pictures

x0

1 Solve MLP0 to get x0. Send
policy forward

2 Solve each MLPS0 using x0 and
realizations ξ1

3 Continue forward to end

4 Go backwards. Send cuts from
children back to parent. Update
MLPn and resolve.

5 Lather, Rinse, Repeat.

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 13 / 14

Multistage Formulation and Algorithm

Multistage References

Parallel Implementation: [Ruszczyński, 1993, Birge et al., 1996]

Jeff Linderoth (UW-Madison) Computational SP Lecture Notes 14 / 14

	Extensive Form
	Oracle-Based
	Regularizing
	Level Method

	Other Ideas for 2SP
	Dual Decomposition Methods
	Bunching
	Interior Point Methods

	Computing
	SMPS
	Utility Libraries
	Parallel Computation

	Sampling and Monte Carlo
	Appendix
	Bibliography
	Interior Sampling
	Stochastic Decomposition
	Stochastic Approximation

	Multistage
	Formulation and Algorithm

