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(Relatively) New field 

Stochastic Integer programming: 

 

First paper (TTBMK) : 0/1 in the first-stage only  : R. Wollmer, M.P. (80) 

Recourse function +Asymptotic analysis:    L.Stougie (Thesis 87) 

…. 

Integer L-shaped method :  G. Laporte, F. Louveaux , ORL (93) 

Simple integer recourse: M. Van der Vlerk (Thesis 95) 

…. 

 

more than 5 sessions with SIP in this conference  

Stochastic programming: 

 

Seminal papers  : G. Dantzig , Mgt. Sc. (55) 

                               A. Charnes, W. Cooper, G.  Symonds , Mgt. Sc. (58) 

…. 

                               R. Van Slyke, R. Wets  SIAM J. A.M. (69) 
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Presentation outline 

 
•  Modelling 

•  Difficulty 

•  Exact Methods 

•  Simple Integer  

•  Finiteness / Branching (in the second-stage)   

•  Reformulation / Valid Inequalities (in the second-stage) 

•  Sampling 

•  Integer L-Shaped (finiteness in first-stage)  

•  Conclusion 



François Louveaux  Bergamo 

2013/07 

B, 2 

A, 2 

C,  

1 or 7 

D, 2 

Depot 

• Vehicle of capacity = 10 

 

• Demand is 2 at nodes A,B,D 

 

• Demand is random at node  C:   

       1 or 7 with equal probability ½ 

 

• No limit on travel time 

Importance of Uncertainty :  

New decisions 

Dist 0 A B C D 

0 - 2 4 4 1 

A 2 - 3 4 2 

B 4 3 - 1 3 

C 4 4 1 - 3 

D 1 2 3 3 - 
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« Early information » 

Assume we can get the information in advance 

B, 2 

A, 2 

C, 7 

D, 2 

Depot 

(b) 

Effective length = 14 

« demand in C = 7 » 

WS = 12.0 = expected length, if information is available beforehand 

B, 2 

A, 2 

C, 7 

D, 2 

Depot 

(a) 

Effective length = 10 

« demand in C = 1 » 
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« Classical » approach : expected value problem 

B, 2 

A, 2 

C, 4 

D, 2 

Depot 

 

 

Expected demand in C =  4 : 

All demand can be accomodated in 

one vehicle 

 

« Optimal » Tour : A,B,C,D 

Length : 10 

« Forget Uncertainty »: Mean value problem 

(or Expected value problem) 

Replace the random variable by its expectation 
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Uncertainty does not forget you ! 

B, 2 

A, 2 

C, 1 

D, 2 

Depot 

a.   « Demand in C  =  1 » 
 

Tour : A,B,C,D as planned 

 

Length : 10 

A, 2 

C, 7 
b.   « Demand in C  =  7 » 

Failure 
 

Tour: 

A,B,C,Depot,C,D 

 

Length : 18 

 

B, 2 

D, 2 

Depot 

      Expected effective length = 14 
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Be clever :  use a recourse policy ! 

 
 a priori route 

 rules for return trip/preventive returns 

Optimal recourse  policy 

A priori route  : C,B,A,D 

+ preventive return after B when demand in C is 7 

Effective length = 11  

 « demand in C = 1 » 

B, 2 

A, 2 

C, 1 

D, 2 

Depot 

(a) 
B, 2 

A, 2 

C, 7 

D, 2 

Depot 

(b) 

Effective length = 14 

« demand in C = 7 » 

RP = 12.5 = expected effective length, under recourse policy 
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Classical relationships  

      

WS    RP  EEV 

 

EVPI = Expected Value of Perfect Information     = RP - WS 

 

VSS = Value of Stochastic solution =  EEV - RP 

Routing example :    WS = 12,  RP = 12.5, EEV = 14    

                                  EVPI = 0.5, VSS = 1.5 

 

These values can only be computed a posteriori. 

The decision of solving a stochastic program or not must be made a priori. 

 

Principles & modelling:  « Identical as in continuous stochastic programming » 
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Why not solving a series of deterministic programs to get a number of typical « good » 

solutions, and select the best one according to the expected cost ? 

Answer : some solutions cannot be found by a deterministic program.  

B, 2 

A, 2 

C, 1 

D, 2 

Depot 

The optimal a priori solution of the stochastic routing example will never be obtained  

by a deterministic program 

Assume any change of data (demand, 

vehicle capacity) 

Then, when the vehicle can handle the 

total demand, it will always follow the 

shortest route (the TSP route)  

If it cannot handle the total demand in 

one leg, it will always follow the best 

two legs route, not this one. 

Additional example   :  LTL movements (Lium, Crainic, Wallace TS08) 
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Modelling Uncertainty : Recourse Models 

Min  c. x    + E Q(x,) 

 

s.t.  A.x = b ,  x  X 

           

where  Q(x,) = min {q.y  | Wy = h - Tx , y  Y }   

                                   

                                  

                                  . 

                              . 

                                  . 

                                 

                                 

        x   -->      -->   y 

non anticipative  or implementable 

 

difficulty is in Q(x,) and  

« dimension » of ξ    

x = first-stage decisions 

= stochastic components of q, h, T, W 

y(x, ) = second-stage decisions 

x 

y(x,ξ) 

-Same representation when   is a continuous r.v. 

 

-Integer extensions: when x and/or y must be integer 

If y is continuous, Q(x, ) is  

piecewise linear and convex   

 may apply L-shaped for discrete  
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To be or not to be Integer  : stochastic TSP 

« easy problem » as second stage is continuous 

x = (xij ) ,      1 if arc (i,j) is travelled,  0 otherwise 

binary first-stage 

Q(x,) = min {q.y | y  ij  tij  xij -T , y  0 } 

 

= q (ij  tij  xij -T )+ 

q = unit penalty for overtime 

y = overtime = y(x, )   

b. Random travel times 

= (tij ) ,  the travel time on arc (i,j) 

 T = time limit 

a.     Random demand & failures  

= (di ) ,  the demand on i 

yi = binary if failure occurs in i 

       binary (difficult) second-stage 
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TSP with stochastic travel times : integer second-stage 

Vehicles collecting money (Lambert, Laporte, Louveaux COR93) 

 

«  if vehicle arrives late, then money is value of tomorrow » 

Penalty is no longer proportional to tardiness, 

paid as soon as time limit is exceeded  

 Indicator variable == binary variable 

y = 1 if vehicle arrives late,           0 otherwise 

 

Q(x,) = min {q.y | My  ij  tij  xij -T,         y {0,1} } 

And much more difficult  

if more than one route 
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Hub Location Problem 

Potential hub locations 

 

Clients 

Select a set of Hub nodes   

 - that are fully connected  

 - to serve O-D demands: commodity q 

d(q) 

o(q) 

- Using hubs 

O’Kelly  (TS 86, EJOR87) 

Contreras, Cordeau, Laporte (EJOR11) 
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Hub Location Problem 

Potential hub locations 

 

Clients 

Select a set of Hub nodes   

 - that are fully connected  

 - to serve O-D demands: commodity q 

d(q) 

o(q) 

- Using hubs 

- or hub connections, using edge e 

between two hubs 

e 

Decisions 

 

xi = open hub i  H 

yeq = commodity q is served through  

edge e  E  

with 

fi = fixed cost of opening hub i  H 

ceq = cost of serving commodity q  

through  edge e  E  
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Stochastic Hub Location Problem 

d(q) 

o(q) 

e 

Decisions 

xi = open hub i  H                              =   first-stage binary 

yeq = q is served through  e  E            =  second-stage binary  

Uncertainty may come from 

- random demands 

- random costs  

Very large second-stage (already in the deterministic case = large number of q ’s) 
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Many other examples 

 

- Unit commitment (Takriti, Birge, Long  IEEE 96) 

 

- Production planning (lot sizing) (Haugen, Løkketangen, Woodruff EJOR01)  

 

- Ground Holding Airlines Operations (Ball et al OR 03) 

 

- Capacity expansion (Ahmed, Garcia AOR 03) 

 

 

And we want to solve also  generic problems (no specific structure) 
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Main reference used in this talk  
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Presentation outline 

 

•  Modelling 

•  Difficulty 
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Difficulty of S.I.P. 

Q(x) 

  Q(x) = min { 2.y1
.+ y2 | 

.y1  2 -x , y2  x -2, y    0, y  integer } 

0   1   2   3   4 

Value of a deterministic integer program (Blair, Jeroslow MP82)  

Not continuous, 

Not convex, 

Not….. 

Subadditive  :   Z(u+v)    Z(u) + Z(v) 

Non-decreasing 

Lower semi-continuous 

 

If W and b are integer, Z(b) is  

piecewise constant on some multidimensionnal cells  

  Z(b) = min { q.y | W.y  b    y    0, y integer } 

x 

Stochastic case: 

In addition, dependance on x 
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Continuous Cumulative distr.   F( ) = 2 - 2/  ,   [1,2]     

 

 Q(x) is not convex (but continuous) 

       1    2     3     4 

  1     2      3    4 

1     2      3     4 

Q(x,2) 

Q(x) 

 = 2 or 3, with probability 1/2 each. 

  Q(x,) = min { 2 .y1
.+ y2 | 

.y1  x -  , y2   - x, y    0, integer } 

Stougie(1985) 

Schultz (MP03) 

Q(x,3) 

x 

x 

x 

Difficulty of S.I.P.  :   Taking expectations 
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Presentation outline 

 

•  Modelling 

•  Difficulty 

•  Exact Methods 

•  Simple Integer  
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Continuous Simple recourse 

Q(x,) = min {q+  y++ q- y- |   y+  -  y- =  - Tx,      y+,y-    0 } 

Any difference between χ and  is corrected by a  recourse action   y+  or  y-  

             = min {q+ y++ q- y- |   y+  - y- =  - χ ,      y+,y-    0} 

 

                                         with   χ =  T. x (tender) 

Wets, Stochastics 83        
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Simple integer recourse (van der Vlerk 95) 

  Q(x,) = min {q+  y+ + q- y- |   y-  T. x - ,    y+   - Tx,      y+,y-    0, integer } 

Any difference between χ and  must be corrected by an integer recourse action 

yi
- = 

┌
χi - i

┐+
,    yi

+ = 
┌
 i - χi

┐+ 
      

Q(x) = E Q(x,) = E [    Σi qi
- ┌χi - i

┐+  
    +  Σi qi

+ ┌i - χi
┐+ 

   ]  ,             with χ =  T. x  

All we have to understand are uni-dimensional functions of the form  

 

                 u(x)   =  E 
┌
  - x 

┐+ 
        

             = min {q+ y+ + q-y- |   y-  χ  - ,    y+   - χ ,      y+,y-    0, integer } 

 

                                         with   χ =  T. x (tender) 

Differences can be computed componentwise
 
      

         and      v(x)   =  E 
┌
 x -   

┐+ 
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Decision : x seats to reserve for full-fare 

                  

Remaining 48-x seats=  certain revenue=    146(48-x) 

Full-fare, random demand revenue=    219 min (x, ξ)  

Example : ABC airlines is offering a Tenerife-Fuerteventura flight roundtrip at  

146 euros, on a ATR42 with 48 seats . They want to propose a full-fare ticket  at  

219 euros , allowing flexible reservations. They assume large demand for low fare  

& a random demand ξ for the full fare ticket. 

 How many seats should be reserved for the full fare (no overbooking) ? 

min { - 146(48-x)  - Eξ 219 y,    y ≤ x ,   y ≤ ξ,   0 ≤ x ≤ 48 ,   x, y  Z + } 

Use y+ = ξ – y    or   y = ξ - y+      y ≤ x   is    y+ ≥ ξ – x 

                                                          y ≤ ξ   is    y+ ≥  0 

                                                          219y = 219 ξ -219 y+   

-219 μ – 7008  +      min  {146x   +219  Eξ 
┌
(ξ - x)

 ┐ + } 

min {146x   +219  u(x) ,     0 ≤ x ≤ 48 ,   x  Z + } 

http://www.google.be/url?sa=i&source=images&cd=&cad=rja&docid=5Qq-oPawNOWY_M&tbnid=kT7l-k3LKk0SQM:&ved=0CAgQjRwwAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTeide&ei=zB23UZfRHoq60QWT3oHIDA&psig=AFQjCNH0uo5wqWWcJ2IwWhfpjWXvsTmgSg&ust=1371041612599741
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Expected surplus :   u(x)   =  E 
┌
  - x 

┐+ 

 

« Surplus » = surplus of « demand   » versus « production x » 
 
         

u(x)   =  E 
┌
  - x 

┐+ 
 = Σj ≥1    j. P(

┌
  - x 

┐+
 =j)                         as  

┌
  - x 

┐
 Z 

   

   = Σj ≥1    j. P( j-1 <  - x ≤ j) = Σj ≥1    j. P( j+x-1 <  ≤ j+x)   

  

    = Σj ≥1    j.  [F(j+x)   - F(j+x-1) ]        with F(t) = P(  t) the cumulative     

      distribution of   

             ∞
              

   = Σk = 0 (1 – F(x + k)) 

=  Σj ≥1    j.  [F(j+x) -1  + 1   - F(j+x-1) ]                     to have F(x)-1, a value -->0  

 

 =  -(1-F(x+1)) + 1-F(x) – 2(1-F(x+2)) + 2(1-F(x+1)) – 3 (1-F(x+3)) + 3 (1-

F(x+2)) .. 

 

= 1 – F(x)      + 1-F(x+1)       +1- F(x+2)     +…                                          
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                    ∞
              

u(x) = Σk = 0 (1 – F(x + k)) 

Bad news : infinite sum 

Finite calculation of u(x)  

•  ξ has finite range : stop when F(.) = 1 

 

•  Analytical expressions exist :  exponential distribution 

 

• Poisson : Use u(0)  and u(0) -  u(n)  =  first n terms in u(x) 

 

• There are good bounds when restricting u(x) to its first n terms 

 

                    ∞         ^
 
                                        ^

  

v(x) = Σk = 0  F(x - k)        with  F(t) = P( < t) 

 

Same properties as u(x) 

Louveaux, van der Vlerk (MP93)  
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u(x) = Σk ≥  0 (1 – F(x + k)) 

u(x+1) = Σk ≥  0 (1 – F(x + k+1)) 

 

Thus, u(x) contains one extra term 1-F(x) :  

                                 

                                 u(x)- u(x+1) = 1- F(x) 

  

Similarly 

                                 u(x+1) – u(x+2) = 1 – F(x+1)   

 

Add the two :           u(x) – u(x+2) = (1- F(x))   +   (1 – F(x+1)) 

 

Repeat…  

Proof 

Use first n terms 

                                                                                       n-1 

                            u(x+n)   = u(x) - Σk =0   (1-F(x+k))  

Useful when u(x) easily calculated for some x. 

 

Example: Poisson :     u(0) =  E 
┌
  

┐+
  = E   = μ 
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  1      2      3       4     x 

u(x) 

 = 1, 2 or 3, with probability 1/3 each. 

 

u(x+1) – u(x) = 1 – F(x)   

 

F(x) non decreasing in x    

   u(x+1) – u(x)  is non increasing in x 

 

 i.e. convexity property between points that are integer apart 

 

For a given x, the piecewice linear function that joins  the 

sequence of points {x+k, u(x+k)}, k=0,1,…     is convex    

Expected surplus :   u(x)   =  E 
┌
  - x 

┐+ 

                                              
in general non convex (exception , uniform)
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  1      2      3       4     x 

u(x) 

 = 1, 2 or 3, with probability 1/3 each. 

u(x+1) – u(x) = 1 – F(x)   

 

F(x) non decreasing in x    

   u(x+1) – u(x)  is non increasing in x 

 

 i.e. convexity property between points that are integer apart 

 

For a given x, the piecewice linear function that joins  the 

sequence of points {x+k, u(x+k)}, k=0,1,…     is convex    

 holds for any x 

Expected surplus :   u(x)   =  E 
┌
  - x 

┐+ 

                                              
in general non convex (exception , uniform)
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  1      2      3       4     x 

u(x) 

 = 1, 2 or 3, with probability 1/3 each.  =0.5, 1.5, 2.5, with probability 1/3 each. 

.5    1.5   2.5           x 
0      1     2      3 

Convexity between points that are integer apart 

Also holds for continuous  

Other convexifications, Van der Vlerk (MP 04) 

  Exact finite method when « tenders » are integer (see next section) 
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Example : ABC airlines is offering a Tenerife-Fuerteventura flight roundtrip at  

146 euros, on a ATR42 with 48 seats . They want to propose a full-fare ticket  at  

219 euros , allowing flexible reservations. They assume large demand for low fare  

& a random demand for the full fare ticket. 

 How many seats should be reserved for the full fare ? 

min {146x   +219 u(x) ,      0 ≤ x ≤ 48} 

  Assume demand full-fare is Poisson(3) 

  u(0) ==  E 
┌
  

┐+ 
= E() = 3 

  u(0) = 3            u(1)   = 2.0498 

  u(2) = 1.249     u(3)  =  0. 6721 

  u(4) = 0.3194   u(5)  = 0.1346  ….. 

         3 u(0)  =  9 

   2 + 3 u(1)  =  8.1494 

   4 + 3 u(2)  =  7.7470 

   6 + 3 u(3)  =  8.0163 

  stop     x*=2 

min {2x   +3 u(x) ,      0 ≤ x ≤ 48} 

http://www.google.be/url?sa=i&source=images&cd=&cad=rja&docid=5Qq-oPawNOWY_M&tbnid=kT7l-k3LKk0SQM:&ved=0CAgQjRwwAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTeide&ei=zB23UZfRHoq60QWT3oHIDA&psig=AFQjCNH0uo5wqWWcJ2IwWhfpjWXvsTmgSg&ust=1371041612599741
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Presentation outline 

 

•  Modelling 

•  Difficulty 

•  Exact Methods 

•  Simple Integer  

•  Integer L-Shaped  
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Solving continuous linear recourse models (no feasibility cuts) 

Min  c. x + Q(x)  

s.t. A.x = b  

      x    X  

Min  c. x + θ  

s.t. A.x = b  

      Es x + θ  ≥  es,      s =1,…S 

      x    X  

(continuous) optimality cuts 

Equivalent if full set 

of optimality cuts 

Constructive algorithm : L-Shaped or Bender’s 

(CPν )    Min  c. x + θ  

              s.t. A.x = b  

             Es x + θ  ≥  es,      s =1,…ν 

             x    X  

 Current Problem at iteration ν  

 θ  is a lower bound on Q(x)  

Proposal  xν 

Second-stage program  Q(x,)  

= min {q.y  | Wy = h - Tx , y  Y } 

for all   

New cut through 

expected dual multipliers 
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Integer L-shaped 

Min  c. x + Q(x)  

s.t. A.x = b  

      x    X  

Min  c. x + θ  

s.t. A.x = b  

      Es x + θ  ≥  es,      s =1,…S 

      x    X  

optimality cuts 

Equivalent if full set 

of optimality cuts 

Constructive algorithm : Integer L-Shaped  

(CPν )    Min  c. x + θ  

              s.t. A.x = b  

             Es x + θ  ≥  es,      s =1,…ν 

             x    X  

 Current Problem at iteration ν  

 θ  is a lower bound on Q(x)  

Proposal  xν 

Second-stage program  Q(x,)  

= min{q.y | Wy = h - Tx, yY, integer} 

For all   

New cut through  integrality arguments   

??? 
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Integer L-Shaped 

Finiteness comes from « finitely » many first-stage solutions,  

successively eliminated by  so-called « optimality cuts »  

 

Apply a B&Cut algorithm with extended rules (as objective is « estimated ») 

Conditions: 

 

- Q(x) can be « easily » computed for a given x 

 

- ability to obtain optimality cuts  

 

 and lower bounding functionals at fractional points   (some form of lifting of cuts) 

 

- a good lower bound on Q(x) helps 

  

First-stage binary variables, « any » second_stage 
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Binary Optimality Cuts          (Laporte Louveaux ORL 93) 

Consider a given binary solution xn with recourse value θν      

B.O.C.1.  Wn(x)    0 

B.O.C.2.  q    L + (qn  - L) . Wn(x) 

Exclude current solution 

Wn(x)      

θ 

0          1 

L 

θν
       

Let S = {i | xi
ν
 = 1 } and S’ =  {i  | xi

ν
 = 0} 

   = 1  if   x = xn
  

 Wn(x) =             < 1  if   x  xn 

                           0  if   x  xn    x integer 

        

Bound the recourse function with exact value in xn 

Wn(x) =  iS
 xi   -  ΣiS’ 

 xi  - |S|  + 1  

Wn(x) = 1 – H (xn) , with H(xn) the Hamming distance to xn      
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Example 

Assume an object can be obtained from 4 sources (copper from mines, e.g.).  

Let xi = 1 if one invest in i, 0 otherwise.  

If one invests in i, one gets a random return ξi ~ P(.), with parameters 4,5,2,3  respectively.  

In the second stage, a penalty 40 is paid if the target T=8 is not attained.   

 

Q(x)= 40 * P(Σi ξi xi < 8) 

B.O.C.2.  q    1.265 + 22.683 Wn(x)  

 

q   -21.418 +22.683(x1 +
 x4   -  x2 –

 x3 ) 

Wn(x)      

θ 

0          1 

L 

θν
       

 S = {1,4 } and S’ =  {2,3} 

Wn(x) =  x1 +
 x4   -  x2 –

 x3  - 1  

L is obtained when xi = 1 for all i   L = 40 *P(Poisson(14) < 8) =  1.265 

Consider xn=(1,0,0,1).  

 Σi ξi xi ~ P(7). 

 qn  = 40*0.5987=23.948 
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Wn(x)      

θ 

-1          0          1 

L 

θν
       

Lifting: 

Wn(x) =  x1 +
 x4   -  x2 –

 x3  - 1 

Consider the case when Wn(x) =0. This can come from only two types of changes:            

 either x2 or  x3 goes to 1 while x1 and x4  are unchanged, 

                either x1 or  x4  goes to 0  while x2 and x3  are unchanged 

In the first case,  Q(x) will decrease.  

A lower bound λ on Q(.) is obtained when  x2 goes to 1 .  

Then Σi ξi xi ~ P(12) , with P(Σi ξi xi < 8) = 0.0895   λ = 3.58  

 

In the second case, Q(x) increases.  

λ 
Draw a cut through qn and λ provided it goes below L at -1  

B.O.C.2.lifted          q    3.58 + 20.368 Wn(x)  

 

q   -16.788 +20.368(x1 +
 x4   -  x2 –

 x3 ) 
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Integer L-Shaped: binary first-stage 

(CPν )    Min  c. x + θ  

              s.t. A.x = b  

             Es x + θ  ≥  es,      s =1,…S 

             x    X  

 Current Problem at iteration ν  

 Includes continuous + binary O.C.  

 θ  is a lower bound on Q(x)  

(Modified) Branch &Cut scheme: 

 

Add cuts 

When needed do branching on fractional solutions 

When an integer solution is found, add a B.O.C. 

Nodes are eliminated only because : 

-  infeasible 

- worse solution than best known 

If possible, try to get B.O.C. at fractional first-stage solutions 
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VRP with stochastic demand : L & Q(x) 

i  = quantity to be collected in i 

D = vehicle capacity 

Recourse action in case of failure: 

 

Return trip to depot 

Q(x) =  j  P (failure occurs at j). 2.c
j0

  Assumptions : 

- no preventive return, 

- no exact stockout,  

- no 2 failures on a route 
Q(x) =  min {Q1(x) , Q2(x) } 

Consider a given route, say {0,1,2,…,n,0}  

It has two orientations (clockwise and anticlockwise),  = 1,2 

client 

depot 

L= P(total demand > D). min i V {2c0i}  
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i  = quantity to be collected in i 

D = vehicle capacity 

Ej=  {cumulative demand up to j exceeds vehicle capacity}  

{failure occurs at j} = Ej  ∩ Ej-1                       with Ej    := « not Ej  » 

P (Ej ) = P (Ej  ∩ Ej-1 ) + P (Ej  ∩ Ej-1 ) = P (Ej  ∩ Ej-1 ) + P (Ej-1)  

                               as Ej-1 implies Ej. 

 P (Ej  ∩ Ej-1 ) = P (Ej)  - P (Ej-1) = 

= P(1 s  j s >  D) - P(1  s  j-1 s  > D)          complement both to 1 

= P(1  s  j-1 s  D) - P(1  s  j s  D) = Fj-1(D) – Fj(D) 

Assumptions : 

- no preventive return, 

- no exact stockout,  

- no 2 failures on a route 

Consider a given route, say {0,1,2,…,n,0} and a given 

orientation  

client 

depot 

VRP with stochastic demand : L & Q(x) 
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Lower Bounding functionals at fractional points  (m = 1) (Hjörring - Holt AOR98)  

 --------       fractional arcs 

 _____     

                 Partial Route h =   (0, 1, 2,….r),     

                       H =   {1,2 , …,r
 
} 

Dummy 

demand   =  i V/H di 

distance to depot = min i V/H {c0i} 

     qh  := lower bound on Q(x) for any solution including h as a partial route 

Cut :     q    (qh - L)  (k < r   xk,k+1  -  (r-1) ) + L  

since  k < r  xk,k+1    r  iff  x  contains partial route h  

θh  = expected cost  

        of dummy route  
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No easy second-stage formulation 

 

Especially if more than one vehicle 

Extensions to any m  (Laporte, Louveaux, Vanhamme OR 02) 

Cuts based on r m partial routes 

 

Advanced techniques for lower bounds   

m = 3, n = 50 

m = 2, n = 100 

Good treatment of r.v. 

         Poisson, Normal 

Extra efficiency through local branching:     (Rei et al   Informs J. of Computing09) 

Branch&Price    Christiansen, Lysgaard (ORL07)  

Cuts based on subsets Jabali et al (12)  
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Presentation outline 

 

•  Modelling 

•  Difficulty 

•  Exact Methods 

•  Simple Integer  

•  Finiteness / Branching (in the second stage)  

•  Integer L-Shaped  
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Q(x) = min  5 y1 + 3y2  

 

2 y1 +  3 y2   5 – x1 – 2x2 

  

4 y1 +     y2   3 – x1 – x2 

 

 y1, y2 ≥ 0, integer 
R1 

R3 :  Q(x) =5    as    y1 =1  y2= 0  is optimal R3 :  {x | x1+ 2 x2   3} \R2\R1  

R2  

R1 :  Q(x) = 0 

R2 :  Q(x) = 3   

R3 

R4 :  Q(x) =6    as    y1 =0  y2= 2  is optimal R4 :  {x | x1+ x2   1} \R3\R2\R1  

R4 

 R5 :  {x | x1   0, x2   0} \R4\R3\R2\R1  R5 :  Q(x) =8    as    y1 =1  y2= 2  is optimal 

 R5 

R1 :  {x | x1+ 2 x2   5, x1 + x2  3}  

R2 :  {x | x1 + x2  2} / R1  

as    y1 =0  y2= 1  is optimal  

Finiteness :  

Space of tenders 
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Transformation 

Q(x,ξ) = min  5 y1 + 3y2  

 

2 y1 +  3 y2   ξ1 – x1 – 2x2 

  

4 y1 +     y2   ξ2  – x1 – x2 

 

 y1, y2 ≥ 0, integer 

ψ(χ, ξ) = min  5 y1 + 3y2  

 

2 y1 +  3 y2   ξ1 – χ1 

  

4 y1 +     y2   ξ2  – χ2 

 

 y1, y2 ≥ 0, integer 

min cx + Q(x) 

 

A x = b 

 x ≥ 0  integer 

min cx + ψ(χ)  

 

A x = b 

Tx = χ 

 x ≥ 0  integer, χ integer  

χ1 =  x1 + 2x2 

  

χ2 =  x1 +   x2 

 

ψ(χ) = Eξ ψ(χ, ξ) 

Q(x) = Eξ Q(x, ξ) 
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Transformation 

R3 : ψ(χ) =5  

R1 : ψ(χ)  = 0 R2 : ψ(χ) = 3   

R4 : ψ(χ)  =6 R5 : ψ(χ) =8 

ψ(χ) = min  5 y1 + 3y2  

 

2 y1 +  3 y2   5 – χ1 

  

4 y1 +     y2   3 – χ2 

 

 y1, y2 ≥ 0, integer 

R1 

R2  

R3  

R4 

R5  

                 2          3                 5    χ1  

χ2 

 

 

 

 

3 

 

2 

 

1 

Regions are not closed  : e.g. R5 = {0  χ1 < 3, 0  χ2 < 1} 

and not convex  



François Louveaux  Bergamo 

2013/07 

Transformation 

B1 

B2  

B3  

B4 

B5  

                 2          3                 5    χ1  

χ2 

 

 

 

 

3 

 

2 

 

1 

B6  

B7 

Hyper-rectangles or boxes 

of the form 

Πi  [li , ui – ε] 

Branch & Bound by partitionning 

the (finite) space of χ 

Ahmed,Tawarmalani, Sahinidis (MP 04) 

Kong, Schaeffer, Hunsanker (MP 06) 

Pure IP 

Fixed tender 

W may be random 

Intersections over ξ will keep 

discontinuities at integer points  
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Presentation outline 

 

•  Modelling 

•  Difficulty 

•  Exact Methods 

•  Simple Integer  

•  Finiteness / Branching  

•  Reformulation / Valid Inequalities 

•  Integer L-Shaped  
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Reformulation 

Integer point 

LP-relaxation: 

 

12 x1 +  5 x2    ≤  28  

  

  5 x1 + 12x2    ≤  30 

 

  x1, x2 ≥ 0 

Typical  LP-solution:   x1 =   1.849    x2   = 1.563  

Fractional solution ; lots of branching  
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Reformulation 

Better LP-relaxation: 

 

2 x1 +   x2    ≤  4  

  

             x2    ≤  2 

 

  x1, x2 ≥ 0 

Typical  LP-solution:   x1 =   1    x2   = 2  
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Reformulation 

LP-relaxation: 

 

2 x1 +   x2    ≤  4  

  

             x2    ≤  2 

 

  x1, x2 ≥ 0 

All extreme points are integer 

 

Formulation  ≡  Integer Hull 
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Reformulation/Valid Inequalities 

Extensive research over the years 

How to find them (separation problem) 

How to use them (send groups of global constraints) 

Generic or specific  

Cover inequalities, LGCI  (Gu, Nemhauser,Saveslbergh 96) 

 

Flow cover inequalities (Q.Louveaux, L.Wolsey 05) 

 

Gomory cuts, MIR, disjunctive cuts…   (Gomory 58, Nemhauser Wolsey 90, 

                                                                                          Jeroslow 72,  Balas 75) 

4 y1 + 5 y2 + 3 y3 + 6 y4   8   

y binaries 

Current solution (associate LP) 

y1 = 1,  y2 = 0.8,  y3 =  y4 = 0 

 y1 +  y2    1 

 y1 +  y4    1 

 y2 +  y4    1 

 y3 +  y4    1 
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Solving SIP 

(CPν )    Min  c. x + θ  

              s.t. A.x = b  

             Es x + θ  ≥  es,      s =1,…ν 

             x    X  

Proposal  xν 

Second-stage program  Q(x,)  

= min {q.y  | Wy = h - Tx , y  Y } 

For all   

Cut through expected 

dual multipliers 

SIP: reformulate second-stage 

 polyhedral representation of second-stage 

« Expected » advantages: 

         Use known techniques for reformulation of second-stage 

         Use known techniques for stochastic Bender’s 

Theoretical foundations : Carøe Tind (MP 98) 
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Disjunctive cuts (in general) 

Indeed , if x  (P0  P1), it must belong to one of the sets. 

Say, it belongs to P0  , then  x  ≥ u0 A0 x ≥ u0 b0 ≥ ρ 

Same for P1 

Then  x ≥  ρ  is valid  with   ≥  max {u0 A0 , u1 A1 } 

ρ    min {u0 b0 , u1 b1 } 

Any non negative combination of the constraints is a valid inequality. 

 

Pick some vector u0 ≥0 as combination of A0x ≥b0 ;    u0 A0x ≥ u0 b0 is valid for P0  

  

Similarly pick  u1 ≥0 as combination of A1x ≥b1  

Create the disjunction P=(P0  P1)   with P0 = {x |A0x ≥b0 ,x ≥0} & P1 = {x |A1x ≥b1 ,x≥0}  

To find a violated inequality at the current xν , solve max violation: 

 

Max ρ -  xν    

≥  u0 A0   ,  ≥  u1 A1 , ρ    u0 b0, ρ    u1 b1     + some normalisation , u≥0 
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Disjunctive cuts (for branching) 

Let u0 the multipliers of Wy ≥b, v0 the multipliers of y ≤ e  and w0 the multiplier of yj≤0 in Y0  

Let u1 the multipliers of Wy ≥b, v1 the multipliers of y ≤ e  and w1 the multiplier of yj≥1 in Y1 

Then  y ≥  ρ  is valid  with  

 ≥  u0 W - v0 - w0 ej 

ρ    u0 b - e v0 

To find a violated inequality at the current yν , solve max violation 

 

Max ρ -  yν    

s.t. the above constraints and normalisation -1  ρ 1 and  -e    e     

Create the disjunction Y=Y0  Y1,      

with Y0 = {y | Wy ≥b, y≤e,  yj ≤ 0} & Y1 = Y  {y | Wy ≥b,  y ≤ e , yj ≥ 1} 

with e the unit vector. 

 ≥  u1 W - v1 + w1 ej 

ρ    u1 b - e v1 + w1 
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Reformulation in  Stochastic Integer Programming 

-   Add cuts (valid inequalities) to the second stage 

 

-   Try to create cuts that are shared by several (all) realisations k 

 

 

-   Warm start  

Sen & Higle (MP 05) 

 

-   Use Lift&Project to generate second-stage cuts 

              (Balas,Ceria, Cornuéjols MP93, Balas Perregaard MP03) 

 

-    Cuts are obtained from the solution of an LP, as a linear combination of the constraints :       

 if W is fixed, l.h.s. are independent of the realizations of the r.v. 

 

-   Warm start as one cut is added to current basis  
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 ≥  u0 W - v0 - w0 ej 

ρ    u0 b - e v0 

Max ρ -  yν    

 normalisation -1  ρ 1 and  -e    e     

 ≥  u1 W - v1 + w1 ej 

ρ    u1 b - e v1 + w1 

 Solve one such problem for each k  

C³      Max  Σk pk (ρ
 k -  yνk )   

ρk    u0 bk - e v0 

ρk    u1 bk - e v1 + w1 

same constraints on  

same normalisation 

Alternative : one inequality  y ≥  ρk,  for each k,    but same  for everybody 

C³ = Common Cut Coefficients  common   

D1. Many realizations of  

Observation: constraints on  are the same when 

W is fixed 

 with yνk = solution of current second-stage for k  
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Solve RHS k  : LP to obtain cut valid  x 

ρk is a function of x 

In S.I.P., bk  = hk  - Tkx is a function of x     

x 

ρ 

ρk    u0 bk - e v0 

ρk    u1 bk - e v1 + w1 

ρk    u0 (hk  - Tkx) - e v0 = u0 hk - e v0 - u0 Tkx = α0 - β0 x   

ρk    u1 (hk  - Tkx) - e v1 + w1  = ….= α1 - β1 x   

RHSk = disjunction  (P0  P1)    

        P0 = {x |Ax ≥b, γ ≥ α0 - β0 x ,x ≥0 } &   

        P1 = {x  |Ax ≥b, γ ≥ α1 – β1 x ,x ≥0 }  

where γ represents the minimum of the two expressions  

and Ax ≥b bounds the region where convexification occurs. 

D2. Cuts are dependent on x 

Ntaimo & Sen (JGO 04)  Computational experiments  

Sherali & Sen (MP 05)    Add Branching in second-stage 

Gade, Kuçukyavuz,Sen  (MP 12)  Gomory cuts when x is binary.  
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Presentation outline 

 

•  Modelling 

•  Difficulty 

•  Exact Methods 

•  Simple Integer  

•  Finiteness / Branching  

•  Reformulation / Valid Inequalities 

•  Sampling 

•  Integer L-Shaped  
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Sample Average Approximation Method 

z* =  min { c. x   + Q(x)  |  x  X } 

 

with  Q(x) =  E Q(x,), and  Q(x,) = recourse for one realization of the random variable  

Sampling and solution step :  

Take a sample of size N, say 1 , 2  , 3,  …., N  and solve 

 

(SAA)  zN =  min { c. x   + 1/N  Σk=1,…,NQ(x,k)   |  x  X } 

 

Denote by xN an optimal solution to (SAA) 

Repeat M times the sampling and solution step 

 

Generate M values zN
1 , zN

2 , …,zN
M   and  

M  candidate solutions  xN
1 , xN

2 , …,xN
M 

-
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Sample Average Approximation Method 

How to choose amongst the M candidate solutions ? 

 

Draw a new & independent sample of size S (>>N) 

 

Select the candidate solution that does best with estimated objective function 

zS (x) =   c. x   + 1/S  Σk=1,…,SQ(x,k)  

 

 

 

Denote by xS such a candidate solution with least zS (x)  value. 

 

xS  arg min { zS(x ) | x {xN
1 , xN

2 , …,xN
M }  }   

The mean value zL = 1/M Σi=1,..,MzN
i   is, in expectation, a lower bound on z*  

   E(zL)  z*  

(Norkin, Pflug, Ruszczyński  MP98,  Mak, Morton,Wood ORL99) 
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Sample Average Approximation Method 

 zS (xS)  is an unbiased estimator of z(xS) and therefore, in expectation, an 

upper bound on the optimal value 

 

                                                       E(zS (xS) ) ≥ z* 

          At the end, the SAA method provides  

 

- estimators of Lower & Upper bound on z*  

 

- an estimation of their variances &  

 

- a candidate solution with the smallest estimate objective value 

 

Verweij et al (COA 03) …. Schütz, Tomasgard,Ahmed (EJOR 09)  

SAA for chance constraint : Calafiore, Campi  (M.P.05) 

                                                 Nemirovski, Shapiro (SIAM J. O.  06)  
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Stochastic Hub Location Problem Contreras, 

Contreras,Cordeau,Laporte (EJOR11) 

 

d(q) 

o(q) 

e 

Decisions 

xi = open hub i  H                              =   binary 

yeq = q is served through  e  E            =  binary  

Interesting/ Difficult cases = capacitated hub location with random demands 

                                               independent random costs 

Solvable size 

- deterministic:   500 nodes, 250,000 commodities (o(q), d(q)) 

- Stochastic costs with SAA +Benders with Pareto-optimal cuts :  

                               50 nodes  2500 commodities  1000 scenarios 

If only the levels of demands are random, 

demands can be replaced by their expected values  

(same route followed if uncapacitated) 

 

Same is true for dependent random costs 
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Remark 

 
•  Several additional methods are available 

- Second-stage decomposition with separable recourse 

 

-    Dual decomposition (scenario decomposition using Lagrangean relaxation  

w.r.t. non anticipativity constraints) Caroe Schultz (ORL99) 

 

- Other enumerative approaches 

 

- Stochastic B&B using statistical estimates : Norkin, Ermoliev, Ruszczyński (OR 98) 

 

- Cuts for specific problems: e. g. lot sizing Guan, Ahmed, Nemhauser,Miller (M.P. 06) 
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Conclusion 

 

•  Some efficient methods are now available 

•  Several open questions remain 

Good news about S.I.P. 

For the users 

For the researchers 

Thank you….. 


