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Multistage stochastic optimization problems

Many real decision problems under uncertainty involve several
decision stages:

I hydropower storage and generation management

I thermal electricity generation

I portfolio management

I logistics

I asset/liabilty management in insurance

At each time t = 0, 1, . . . ,T − 1 a decision xt can/must be made.
We call the sequence x = (x0, x1, . . . , xT−1) a strategy. The costs
of the strategy x is expressed in terms of a cost function, which
depends also on some random parameters (the scenario process)
ξ = (ξ1, . . . , ξT ) defined on some probability space (Ω,F ,P)

Q(x0, ξ1, x1, . . . , xT−1, ξT ).
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Multistage decisions

? ? ? ?
decision decision decision decision

x0 x1 x2 x3

t = 0 t = t1 t = t2 t = t3

observation of observation of observation of

the r.v. ξ1 the r.v. ξ2 the r.v. ξ3

Decisions can only be made on the basis of the available
information. For this reason, we assume that a filtration
F = (F1, . . . ,FT = F) is defined in (Ω,F ,P) such that ξt ▹ Ft

(ξt is measurable w.r.t. Ft).
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Multistage stochastic decision processes

decision
x0

r.v.
ξ1

decision
x1(x0, ξ1)

r.v.
ξ2

decision
x2(x0, ξ1, x1, ξ2)-

-
- -

-
-

t = 0 t = 1 t = 2

Decisions are functions of past observations and past decisions.
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The Decision Problem

The final objective is to minimize a functional R of the stochastic
cost function, such as the expectation, a quantile or some other
functional R

(Opt)

Minimize in x0, x1(ξ1), . . . , xT−1(ξ1, . . . , ξT−1) :
R[Q(x0, ξ1, . . . , xT−1, ξT )]
s.t. x ▹ F
and possibly other constraints on x0, . . . , xT−1 : x ∈ X

x ▹ F means that xt ▹ Ft , i.e. that the decisions are

nonanticipative.
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Scenario Processes

Scenario process are often multidimensional:

I hydropower storage and generation management: rainfall,
electricity spotprices, demand

I thermal electricity generation: fuel prices, spotprices, demand

I portfolio management: asset prices

I logistics: demands at the nodes of the logistic network

I asset/liabilty management in life insurance: Asset prices,
mortality pattern, demand for contracts

Sometimes the available information is more than just the cost
relevant process ξ, e.g. rainfall in other areas which allow better
estimates for the rainfall in the hydrostorage area. That is why we
distinguish between the filtration F and the information generated
by ξ:

σ(ξ) ⊆ F.
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Approximations

In order to numerically solve the multiperiod stochastic
optimization problem, the stochastic process (ξt) must be
approximated by a simple stochastic process ξ̃t , which takes only a
small number of values. Likewise the filtration F must be
approximated by a smaller one F̃ such that σ(ξ̃) ⊆ F̃.

F̃ (x̃1, . . . , x̃T−1) = R[Q(x̃0, ξ̃1, x̃1, . . . , x̃T−1, ξ̃T )]

(Õpt)

Minimize in x̃0, x1(ξ̃1), . . . , x̃T−1(ξ̃1, . . . , ξ̃T−1) :

R[Q(x̃0, ξ̃1, . . . , x̃T−1, ξ̃T )]

s.t. x̃ ▹ F̃

and possibly other constraintsx̃ ∈ X̃.
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Approximation of stochastic decision processes

approximate problem
(Õpt)

original problem
(Opt)

x̃∗,
the solution of (Õpt)

x+ = πX(x̃
∗)

x∗,
the solution of (Opt)

?

-

-

6

6

?

solution

solution

approximation

extension

approximation error e = F (x∗)− F (x+)
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The scenario generation problem

Out of a scenario process

we want to make a scenario tree
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Node-valuated (scenarios) and arc-valuated
(probabilities) trees
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N0 N1 N2 = Ω, the sample space

An exemplary finite tree process ν = (ν0, ν1, ν2) with nodes
N = {1, . . . 10} and leaves N2 = {5, . . . 10} at T = 2 stages. The
filtrations, generated by the respective atoms, are
F2 = σ ({ω1}, {ω2}, . . . {ω6}),
F1 = σ ({ω1, ω2} , {ω3} , {ω4, ω5, ω6}) and
F0 = σ ({ω1, ω2, . . . ω6})
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I Scenario generation is not just a heuristic method, but a part
of approximation theory.

I The fundament of the mathematics of scenario generation is
the notion of distances between probability measures (i.e.
multivariate distributions and stochastic processes).

I The theory of probability quantization deals with the
approximation of probability distributions by those sitting on
finitely points.

I The approximation error can be bounded by the distance
between the scenario models.

I Statistical results on the quality of approximation are available
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The approximation dilemma

The approximation should be coarse enough to allow an efficient
numerical solution but also fine enough to make the approximation
error small. It is therefore of fundamental interest to understand
the relation between the complexity and the approximation quality
of approximative models.

We quantify the approximation error by a new distance concept,
the nested distance for scenario processes and the information
structure.
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Single-,two- and multistage
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Single- or twostage Multistage

Single- or twostage scenario generation just involves to generate a
list of values and probabilities. No information-related aspect
arises. For multistage problems, the tree structure, which encodes
the information structure is very important.

Georg Pflug The generation of scenario trees for multistage stochastic optimization



The one-period case
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P original probability measure, P̃ discrete approximation

P̃ :
probabilities p1 p2 · · · pS
values z1 z2 · · · zS
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Distances of Probability measures

Distances for probability measures are typically defined as

dH(P , P̃) = sup{|
∫

h(w) dP(w)−
∫

h(w) dP̃(w)| : h ∈ H},

where H is a class of functions.

I The uniform distance (Kolmogorov-Smirnov distance)

dU(P, P̃) = sup{|P(−∞, a]− P̃(−∞, a]| : a ∈ Rd}
I The Kantorovich distance

d1(P, P̃) = sup{
∫

h dP −
∫

hdP̃ : |h(u)− h(v)| ≤ ∥u− v∥}.

I The Fortet-Mourier distance

dFMp(P, P̃) = sup{
∫

h dP −
∫

hdP̃ : Lp(h) ≤ 1,

where

Lp(f ) = inf{L : |h(u)−h(v)| ≤ L|u−v |max(1, |u|p−1, |v |p−1)}.
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The moment matching semidistance is not a distance:

dMM(P , P̃) = sup{
∫

wp dP(w)−
∫

wp dP̃(w) : 1 ≤ p ≤ M}

Closedness of moments does not tell anything about the closedness
of the corresponding distributions.

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Two densities g1 and g2 with identical first four moments.
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Integral inequalities: The uniform distance

Hlawka-Koksma Inequality:

|
∫

h(u) dP(u)−
∫

h(u) dP̃(u)| ≤ dU(P, P̃) · V (h).

where V (h) is the Hardy-Krause variation of h: Let
V (M)(h) = sup

∑
J1,...,Jn is a partition by rectangles Ji

|∆Ji (h)|, where ∆J(h) is
the sum of values of h at the vertices of J, where adjacent vertices
get opposing signs. The Hardy-Krause Variation of h is∑M

m=1 V
(m)(h).

In the univariate situation, if K is a monotonic function, then

dU(K (ξ),K (ξ̃)) = dU(ξ, ξ̃).

Here, the distance between random variables is defined as the
distance between their distributions.
Using the quantile transform, the univariate approximation problem
reduces to approximate the uniform [0,1] distribution.
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Integral inequalities: The Kantorovich distance

Let L(h) be the Lipschitz constant of the function h:

L(h) = sup{|h(u)− h(v)|
d(u, v)

: u ̸= v}.

|
∫

h dP −
∫

hdP̃ | ≤ L(h) · d1(P, P̃).

Theorem (Kantorovich-Rubinstein). Dual version of
Kantorovich-distance:

d1(P , P̃) = inf{E(d(X ,Y ) : (X ,Y ) is a bivariate r.v. with

given marginal distributions P and P̃}.

Generalization: The Wasserstein-distance of order r

dr (P, P̃) = inf{
(∫

d(u, v)r dπ(u, v)

)1/r

: π is a probability distribution

on Ξ× Ξ̃ with given marginal distributions P and P̃}.

Georg Pflug The generation of scenario trees for multistage stochastic optimization



Remark. If both measures sit on a finite number of mass points
{z1, z2, . . . , zs}, then drr (P, P̃) is the optimal value of the following
linear optimization problem:

Minimize
∑

i ,j piijdij∑
i πij = P̃j for all j∑
j πij = Pi for all i

For r = 1 this problem has a dual

Maximize
∑

i yi (Pi − P̃i )
yi − yj ≤ dij for all i , j

Here Pi resp. P̃i is the mass sitting on zi and dij = d(zi , zj).
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Interpretation as mass transportation/facility location
problem
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Historic remarks

The distance d1 was introduced by Kantorovich in 1942 as a
distance in general spaces. In 1948, he established the relation of
this distance (in Rm) to the mass transportation problem
formulated by Gaspard Monge in 1781 (Monge’s mass
transportation problem). In 1969, L. N. Wasserstein –unaware of
the work of Kantorovich – this distance for using it for convergence
results of Markov processes and one year later R. L. Dobrushin
used and generalized this distance and initiated the name
Wasserstein distance. S. S. Vallander studied the special case of
measures in R1 in 1974 and this paper made the name Wasserstein
metric popular. Modern books have been written by Rachev and
Rüschendorf (1998) and Villani (2003).
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Implications of closedness in Wasserstein distance

Assume that X ∼ P and X̃ ∼ P̃ . Then

1.
∣∣∣E|X |p − E|X̃ |p

∣∣∣ ≤
p · dr

(
P , P̃

)
·max

{
E

r−1
r

[
|X |r ·

p−1
r−1

]
, E

r−1
r

[
|X̃ |r ·

p−1
r−1

]}
,

2. |E(X p)− E(X p)| ≤
p · dr

(
P , P̃

)
·max

{
E

r−1
r

[
|X |r ·

p−1
r−1

]
, E

r−1
r

[
|X̃ |r ·

p−1
r−1

]}
for p

an integer,

3.
∣∣∣EX 2 − EX̃ 2

∣∣∣ ≤ 2 · d2
(
P , P̃

)
·max

{
E

1
2

[
X 2

]
, E

1
2

[
X̃ 2

]}
,

4.
∣∣∣E|X |r − E|X̃ |r

∣∣∣ ≤
r · dr

(
P , P̃

)
·max

{
E

r−1
r [|X |r ] , E

r−1
r

[
|X̃ |r

]}
and

5.
∣∣∣E|X |p − E|X̃ |p

∣∣∣ ≤
p · d2

(
P, P̃

)
·max

{
E

1
2

[
|X |2(p−1)

]
, E

1
2

[
|X̃ |2(p−1)

]}
,

where p ≥ 1 and r > 1.
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Alternative metrics on R

It is not necessary to measure the distance in R by
d(u, v) = |u − v |. Alternatively one may use the distance

dχ(u, v) = |χ(u)− χ(v)|

where χ is a strictly monotone function on R. A distance on Rm

ca be defined as

d(u, v) =
m∑
i=1

|χi (ui )− χi (vi )|.

A typical example for χ is

χq(u) =

{
u |u| ≤ 1

sign(u) · |u|q |u| > 1
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Relation to the Fortet-Mourier metric
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The following relation holds for q ≥ 1:

1

q
d1(P1,P2|dχq) ≤ dFM(P1,P2) ≤ 2d1(P1,P2|dχq)

The approximation w.r.t. the Fortet-Mourier distance can be
traced back to the approximation w.r.t. the Kantorovich distance
through the transformation
Let G be a distribution function on R:

I Choose q: Transform G with χq : G 1/q = G ◦ χ1/q

I Approximate G 1/q by G̃ 1/q by minimizing the Kantorovich
distance

I Backtransformation: G̃ = G̃ 1/q ◦ χq

This guarantees that also the q-th moments are close.Georg Pflug The generation of scenario trees for multistage stochastic optimization



A comparison

Suppose we want to approximate the t-distribution with 2 degrees
of freedom by a probability measure sitting on five points. Using
the uniform distance one gets the solution P̃1

probability 0.2 0.2 0.2 0.2 0.2

value -1.8856 -0.6172 0 0.6172 1.8856

Using the Kantorovich distance one gets P̃2

probability 0.0446 0.2601 0.3906 0.2601 0.0446

value -4.58 -1.56 0 1.56 4.58
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Case study: Comparison of scenario generation methods

I 13 (somewhat randomly selected) assets: AOL, C, CSCO,
DIS, EMC, GE, HPQ, MOT, NT, PFE, SUNW, WMT, XOM

I Weekly data from January 1993 to January 2003.

I Rolling horizon: asset allocation, backtracking

I Optimize MAD and AVaR with full data and approximations

(R. Hochreiter and G. Pflug)
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Empirical results: MAD

Example (Asset Allocation): Data 01/1993-01/1995, n = 50
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Empirical results: AVaRα

Example (Asset Allocation): Data 01/1999-01/2001,
α = 0.1, n = 50
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Empirical results: AVaRα

Example (Asset Allocation): Data 01/1993-01/1995,
α = 0.1, S = 50
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Optimal discretizations

The basic problem: Let d be some distance for probability
measures and let Ps be the family of probability distributions
sitting on at most s points. For P ∈ Ps , one wants to find the
quantization error

qs,d(P) = inf{d(P ,Q) : Q ∈ Ps} (1)

and the optimal quantization set (could consists of several
probability distributions)

Qs,d(P) = argmin {d(P,Q) : Q ∈ Ps} (2)

(if it exists).
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An example for exact optimality

Let P be a Laplace distribution with density g(u) = 1
2 exp(−|u|).

qs,d1(P) =

{
log(1 + 2

s ) s even
2

s+1 s odd

Here d1 is the Kantorovich distance belonging to the Euclidean
norm. The optimal distributions of points is also known.
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Optimality w.r.t. uniform distance

The optimal approximation of a continuous probability p with
distribution function G by a distribution sitting on at most s mass
points z1, . . . , zs with probabilities p1, . . . , ps w.r.t. the uniform
distance is given by

zi = G−1(
2i − 1

2s
), pi = 1/s, i = 1, . . . , s.

The distance is 1/s.
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A similar result for multivariate distributions (copulas on [0, 1]m) is
unknown.
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Asymptotically optimal discretizaitons

Theorem. Suppose that P has a density g such that∫
|u|r+δg(u) du <∞ for some δ > 0. Then

inf
s
s1/mqs,dp(P) = q̄

(m)
dp

[∫
Rm

[g(x)]m/(m+1) dx

](m+1)/m

.

where q
(m)
dp ,s

= infs s
1/Mqs,dp(U [0, 1]s)) (exact value unknown).

References: Book by Graf and Luschgy, work of Gilles Pages, Klaus
Poetzelberger and many others.
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Monte Carlo sampled scenarios

Let X1,X2, . . . ,Xs be an i.i.d. sequence distributed according to P .
Then the Monte Carlo approximation is

P̂s =
1

s

s∑
i=1

δXi
.

The MC approximation in uniform distance.
Theorem(Kolmogorov). An asymptotic result: Let P be the
uniform distribution in [0,1] and X1,X2, . . . be an i.i.d. sequence
from a P . Then

lim
s→∞

P{
√
sdU(P , P̂s) > t} = 2

∞∑
k=1

(−1)k+1 exp(−2k2t2).

Theorem(Dvoretzky, Kiefer, Wolfowitz inequality). A
nonasymptotic result:

P{dU(P, P̂) ≥ ϵ/
√
S} ≤ 58 exp(−2ϵ2)
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The MC approximation in Kantorovich distance.

Theorem (Graf and Luschgy). Let X1,X2, . . . be an i.i.d.
sequence from a distribution with density g in Rm. Then

lim
s→∞

P{s1/md1(P, P̂s) > t} =
∫

(1− exp(−tmbmg(x))g(x) dx .

where bm = 2πm/2

mΓ(m/2) .
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Large deviations

Theorem (Boley, Guilin and Villani). Suppose that there is an
α > 0 such that

∫
exp(αd2(x , y)))P(dx) <∞. Then there is a

λ > 0 and a N0 > 0 such that for all λ′ > λ, m′ > m and
n ≥ N0max(ϵ−m′−2, 1)

P{d1(P̂s ,P) ≥ ϵ} ≤ exp(−λ′

2
nϵ2).

Theorem (Boley, Guilin, Villani). Let d(x , y) = ∥x − y∥. Suppose
that

∫
exp(α∥x∥)P(dx) <∞. Then for m′ < m, there exist

constants k and N0 such that for ϵ > 0 and
n ≥ N0max(ϵ−(2r+m′), 1)

P{dr (P̂s ,P) ≥ ϵ} ≤ exp(−Kn1/r min(ϵ, ϵ2)).
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Distances for stochastic processes (nested distributions)

If (Ξ1, d1) and (Ξ2, d2) are Polish spaces then so is the Cartesian
product (Ξ1 × Ξ2) with metric

d2((u1, u2), (v1, v2)) = d1(u1, v1) + d2(u2, v2).

Consider some metric d on Rm, which makes it Polish (it needs
not to be the Euclidean one). Then we define the following spaces

Ξ1 = (Rm, d)

Ξ2 = (Rm × P1(Ξ1, d), d
2) = (Rm × P1(Rm, d), d2)

Ξ3 = (Rm × P1(Ξ2, d), d
2) = (Rm × P1(Rm × P1(Rm, d), d2), d2)

...

ΞT = (Rm × P1(ΞT−1, d), d
2)

All spaces Ξ1, . . . ,ΞT are Polish spaces and they may carry
probability distributions.
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Definition. A probability distribution P with finite first moment on
ΞT is called a nested distribution of depth T .
For any nested distribution P, there is an embedded multivariate
distribution P, which has lost the information structure. The
projection from the nested distribution to the embedded
distribution is not injective!

Notation for discrete distributions:

probabilities:
values:

[
0.3 0.4 0.3

3.0 1.0 5.0

]
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Examples for nested distributions
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P =


0.2 0.3 0.5

3.0 3.0 2.4[
0.4 0.2 0.4

6.0 4.7 3.3

] [
1.0

2.8

] [
0.6 0.4

1.0 5.1

]


The embedded multivariate, but non-nested distribution of the
scenario process can be gotten from it:

 0.08 0.04 0.08 0.3 0.3 0.2

3.0 3.0 3.0 3.0 2.4 2.4
6.0 4.7 3.3 2.8 1.0 5.1


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Evidently, the embedded multivariate distribution has lost the
information about the nested structure. If one considers the
filtration generated by the scenario process itself and forms the
pertaining nested distribution, one gets


0.5 0.5

3.0 2.4[
0.16 0.08 0.16 0.6

6.0 4.7 3.3 2.8

] [
0.6 0.4

1.0 5.1

]


�
���

@
@@R

���1
PPPq

�
���

���1
PPPq@
@@R

2.4

3.0

5.1

1.0

2.8

3.3

4.7

6.0

0.5

0.5

0.4

0.6

0.6

0.16

0.08

0.16
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Distances between nested distributions

Since a nested distribution is a distribution on the metric space ΞT

( which consists of values and distributions) the notion of
Kantorovich distance makes sense. If P and P̃ are two nested
distributions on ΞT , then the distance dl(P̃,P) is well defined. This
distance makes sense, even if one process is discrete and the other
is not.
Theorem. Let P, P̃ be nested distributions and P , P̃ be the
pertaining multiperiod distributions. Then

d(P, P̃) ≤ dl(P, P̃).
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Alternative characterization of the nested distance

Theorem. For two nested distributions P := (Ξ,F ,P),
P̃ :=

(
Ξ̃, F̃ , P̃

)
and a distance function on d : Ξ× Ξ′ → R the

nested distance of order r ≥ 1 – denoted dlr
(
P, P̃

)
– is the

optimal value of the optimization problem

minimize
(in π)

(∫
d
(
ξ, ξ̃

)r
π
(
dξ, dξ̃

)) 1
r

subject to π
(
M × Ξ̃ | Ft ⊗ F̃t

)
= P (M | Ft) (M ∈ FT )

π
(
Ξ× N | Ft ⊗ F̃t

)
= P̃

(
N | F̃t

) (
N ∈ F̃T

)
where the minimum is among all bivariate probability measures
π ∈ P (Ξ× Ξ′), which are measures on the product sigma algebra
FT ⊗ F̃T . We will refer to the nested distance also as process
distance, or multistage distance. The nested distance dl2 (order
r = 2), with d a weighted Euclidean distance is referred to as
quadratic nested distance.

Georg Pflug The generation of scenario trees for multistage stochastic optimization



The nested distance: illustration
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How to calculate the nested distance

The Wasserstein distance between discrete trees can be calculated
by solving the a linear program

minimize
(in π)

∑
i ,j πi ,j · d r

i ,j

subject to
∑

j≻n π (i , j |m, n) = P (i |m) (m ≺ i , n),∑
i≻m π (i , j |m, n) = P̃ (j | n) (n ≺ j , m),

πi ,j ≥ 0 and
∑

i ,j πi ,j = 1,

where again πi ,j is a matrix defined on the leave nodes (i ∈ NT ,
j ∈ N ′

T ) and m ∈ Nt , n ∈ N ′
t are arbitrary nodes. The conditional

probabilities π (i , j |m, n) are given by

π (i , j |m, n) =
πi ,j∑

i ′≻m, j ′≻n πi ′,j ′
.
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Example for the nested distance between a continuous
process and a tree

Let

P = N

((
0
0

)
,

(
1 1
1 2

))
.

and

P̃ =

 0.30345 0.3931 0.30345

−1.029 0.0 1.029[
0.30345 0.3931 0.30345

−2.058 −1.029 0.0

] [
0.30345 0.3931 0.30345

−1.029 0.0 1.029

] [
0.30345 0.3931 0.30345

0.0 1.029 2.058

]


The nested distance is d(P, P̃) = 0.82.
The distance of the multiperiod distributions is d(P , P̃) = 0.68.
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The nested distance is d(P, P̃) = 0.82.
The distance of the multiperiod distributions is d(P , P̃) = 0.68.

Georg Pflug The generation of scenario trees for multistage stochastic optimization



−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

0

0.05

0.1

0.15

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

0

0.05

0.1

The nested distance is d(P, P̃) = 1.12.
The distance of the multiperiod distributions is d(P , P̃) = 0.67.
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Examples of nested distances

0 1 2 3
−4

−3

−2

−1

0

1
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4
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0 1 2 3
−4
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−1

0

1
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0 1 2 3
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−3

−2

−1

0

1

2

3
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5

6

P(1): tree 1 P(2): tree 2 P(3): tree 3

dl(P(1),P(2)) = 3.90; d(P(1),P(2)) = 3.48

dl(P(1),P(3)) = 2.52; d(P(1),P(3)) = 1.77

dl(P(2),P(3)) = 3.79; d(P(2),P(3)) = 3.44
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The main approximation result

Let QL be the family of all real valued cost functions
Q(x0, y1, x1, . . . , xT−1, yT ), defined on
X0 × Rn1 × X1 × · · · × XT−1 × RnT such that

I x = (x0, . . . , xT−1) 7→ Q(x0, y1, x1, . . . , xT−1, yT ) is convex
for fixed y = (y1, . . . , yT ) and

I yt 7→ Q(x0, y1, x1, . . . , xt1 , yT ) is Lipschitz with Lipschitz
constant L for fixed x .

Consider the optimization problem (Opt(P))

vQ(P) := min{EP [Q(x0, ξ1, x1, . . . , xT−1, ξT )] : x ▹ F, x ∈ X},
where X is a convex set and P is the nested distribution of the
scenario process.
An approximative problem (Opt(P̃)) is given by

vQ(P̃) := min{EP̃ [Q(x0, ξ̃1, x1, . . . , xT−1, ξ̃T )] : x ▹ F̃, x ∈ X},

where P̃ is the nested distribution of the approximative scenario
process.
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Theorem. For Q in QL

|vQ(P)− vQ(P̃)| ≤ L · dl(P, P̃).

Remarks.

I The bound is sharp: Let P and P̃ be two nested distributions
on [Ξ, dl]. Then there exists a cost function Q(·) ∈ H1 such
that

vQ(P)− vQ(P̃) = dl(P, P̃).

I The inequality

|vQ(P)− vQ(P̃)| ≤ L · d(P, P̃),

where d is the multivariate Kantorovich distance, does NOT
hold.
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Distortion functionals

Let GY be the distribution function of Y . Then the distortion
functional Rσ with distortion density σ is defined as

Rσ(Y ) =

∫ 1

0
σ(u)G−1

Y (u) du

A special example is the average value-at-risk, which has distortion
density

σα(u) =

{
0 u < α
1

1−α u ≥ α
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An extension of the main result

Theorem. Let Rσ be a distortion risk functional with bounded
distortion, σ ∈ L∞.
Consider the optimization problem (Opt(P))

vQ,Rσ(P) := min{Rσ,P[Q(x0, ξ1, x1, . . . , xT−1, ξT )] : x ▹ F, x ∈ X},

where X is a convex set and P is the nested distribution of the
scenario process.
An approximative problem (Opt(P̃)) is given by

vQ,R(P̃) := min{Rσ,P̃[Q(x0, ξ̃1, x1, . . . , xT−1, ξ̃T )] : x ▹ F̃, x ∈ X},

where P̃ is the nested distribution of the approximative scenario
process.
Then

|vQ,Rσ(P)− vQ,Rσ(P̃)| ≤ L · ∥σ∥∞ · dl1
(
P, P̃

)
.
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Scenario tree generation

I Dupacova, Consiglio, Wallace (2000). Clustering and
sequential sampling, importance sampling

I Dupacova, Groewe-Kuska, Roemisch (2003). Scenario
generation using probability metrics

I Heitsch, Roemisch (2009). Scenario tree reduction

I Heitsch, Roemisch (2011). Filtration distance
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Scenario tree generation using the nested distance

Suppose that ξ1, . . . , ξT is a random scenario process and that a
random number generator is available which generates the
conditional distributions ξt+1|ξ1, . . . , ξt .
The tree generation algorithm has three phases

I In phase 1 a large tree is generated using a stochastic gradient
method for optimal discretization of the conditional
distributions.

I In phase 2, the large tree is reduced to an acceptable size.

I In phase 3, the smaller tree is brought as close as possible to
the original large tree.
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Construction of a

large tree

(Phase 1 )

Tree reduction to a

small tree

(Phase 2 )

Optimal adaptation

of the small tree to

the large tree

(Phase 3 )

- -
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Phase 1: Facility location by stochastic gradient search

Suppose that we can generate an i.i.d. sequence of random values
ξ(k). The stochastic approximation algorithm is

1. Initialize

Ξ̃(0) = {ξ̃(0)i : 1 ≤ i ≤ s}

p̃
(0)
i = 1/s for 1 ≤ i ≤ s

2. Observe the next random value ξ(k)

3. Find j ∈ {1, 2, . . . , s} such that ξ(k) is closest to ξ̃
(k)
j .

4. Set ξ̃
(k+1)
j = k

k+1 ξ̃
(k)
j + 1

k+1ξ
(k)
j and leave all other points

unchanged.

5. Estimate

p̃
(k+1)
j =

kp̃
(k)
j + 1

k + 1
p̃
(k+1)
i =

kp̃
(k)
i

k + 1
for i ̸= j

6. Set k := k + 1 and goto 2.
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Example
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The best 7 points to represent a twodimensional normal
distribution.
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Incorporating constraints

Sometimes it is needed to incorporate constraints such as
conditions for the expectation to avoid arbitrage in investment
models.
Writing the previous algorithm as

P(k+1) =
k

k + 1
P(k) +

1

k + 1
(δ

ξ
(k+1)
j

− δ
ξ
(k)
j

)

this algorithm can be modified to

P(k+1) = projP

[
k

k + 1
P(k) +

1

k + 1
(δ

ξ
(k+1)
j

− δ
ξ
(k)
j

)

]
.
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Phase 2: Scenario tree reduction by merging subtrees

I Step 1 – Choice of the subtrees to be merged. Let a tree
P be given. At each level t the nested distance between all
subtrees is calculated. Let P1and P2 be the two subtrees at
stage t which are closest to each other and should be merged
into one. To do so, we use the algorithm Merging trees.

I Step 2 – Merging trees.
1. For merging two trees into one, the new value ξ1 at the new

root is the mean of the two values of the two old roots.
2. For the successors of the two roots the averaging algorithm

with parameter p is used. Suppose that the selected pairs of
nodes are

(i1, j1), . . . (im, jm).

Then, in a recursive step, the subtrees with roots i1 and j1
have to be merged, as well as all other pairs i2 and j2 up to im
and jm.

I Stop or continue. If the new tree is small enough, stop.
Otherwise choose another level t and another pair of close
subtrees to be merged into one by going to Step 1.
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Phase 3: The tree adaptation algorithm (Kovacevic and
Pichler)

I Step 1– Initialization
Set k ← 0, and let ξ0 be process quantizers with related
transport probabilities π0 (i , j) between scenario i of the
original P-tree and scenario ξ̃0j of the approximating P′-tree;

P0 := P̃.
I Step 2 – Improve the quantizers

Find improved quantizers ξ̃k+1
j :

I In case of the quadratic Wasserstein distance (Euclidean
distance and Wasserstein of order r = 2) set

ξ̃k+1 (nt) :=
∑

mt∈Nt

πk (mt , nt)∑
mt∈Nt

πk (mt , nt)
· ξt (mt) ,

I or find the barycenters by applying the steepest descent
method, or the limited memory BFGS method.
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I Step 3 – Improve the probabilities
Find the new transportation plan π∗ using the new quantizers
ξ̃ and calculate all conditional probabilities
πk+1 (·, ·|m, n) = π∗ (·, ·|m, n), the unconditional transport

probabilities πk+1 (·, ·) and the distance dlk+1
r = dlr

(
P, P̃

)
.

I Step 4
Set k ← k + 1 and continue with Step 2 if

dlk+1
r < dlkr − ε,

where ε > 0 is the desired improvement in each cycle k.
Otherwise, set ξ̃∗ ← ξ̃k , define the measure

P̃k+1 :=
∑
j

δξ̃k+1
j
·
∑
i

πk+1 (i , j) ,

for which dlr
(
P,Pk+1

)
= dlk+1

r and stop.

In case of the quadratic nested distance (r = 2) and the Euclidean
distance the choice ε = 0 is possible.
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Computational experience

Stages 4 5 5 6 7 7

Nodes of the initial tree 53 309 188 1,365 1,093 2,426

Nodes of the approx. tree 15 15 31 63 127 127

Time/ sec. 1 10 4 160 157 1,044

Georg Pflug The generation of scenario trees for multistage stochastic optimization



Monte Carlo sampling versus optimal quantization using
nested distances

Monte Carlo sampling: results vary and the box-plots are shown
Optimal quantization: blue line; true value: red boxes
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An inventory control problem (the multistage newsboy problem)
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Approximation at work

Reducing the nested distance by making the tree bushier.
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