
© JRBirge ICSP, Bergamo, July 2013 1 

 Stochastic Programming:  
Basic Theory 

 
John R. Birge 

John.Birge@ChicagoBooth.edu  
www.chicagobooth.edu/fac/john.birge  

mailto:John.Birge@ChicagoBooth.edu�
http://www.chicagobooth.edu/fac/john.birge�


© JRBirge ICSP, Bergamo, July 2013 2 

Goals 
• Provide background on the basics of 

stochastic programming theory 
• Answer the following questions: 

– When is a stochastic programming model 
consistent? 

– When is a stochastic program solvable? 
– What should be true about an SP solution?  
– What can be inferred from solving one problem 

to another (sensitivity)?  
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General Model 
• Choose x2X to: 

minimize Ew[f(x,w)] 
• where:  
• X can be a general space (and might include 

dynamics probabilistic constraints) 
• f can include some form of risk measure 
Categories: Two or multi-stage, recourse (or 

not), probabilistic constrained, robust.. 
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Two-Stage Stochastic Linear 
Program with (Fixed) Recourse 

• Key: Decisions now (x), observe an uncertain 
outcome (ξ(ω)), take a recourse action y(ω) 

• Formulation: 
min cT x + Eξ [ Q(x,ξ) ] 
s.t.  Ax=b, x¸ 0 
where Q(x,ξ) =min{ qT y | Wy = h –Tx, y¸ 0} 
Q(x) = Eξ [ Q(x,ξ) ] is the recourse function and ξ consists of 

random components of q, (W), h, T 
For the farmer in BL book, randomness is in T (yield). 
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Multi-Stage and Nonlinear Models 

• Find x1,….,xt,…. 2 X 
to minimize 

 ∑t=1
1 E[ft(xt,xt+1)] 

• DP/Bellman form: 
 Ψt(x,wt)=minuft+1(x,u)+E[Ψt((x,u),wt+1)] 
X, f include constraints and any restrictions 
(Note: could also have continuous time.) 
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Relationships  
• Statistical decision theory: 

– Usually emphasizes information discovery and 
low dimensions 

• Decision analysis 
– Usually few alternatives  

• Dynamic programming/Markov decision 
processes 
– Usually low dimension (often finite 

state/action) 



More Relationships 
• Stochastic control 

– Usually continuous time and very low 
dimension 

• Machine learning 
– Usually no distributions (online) and focus on 

regret (relative to best possible)  
• Robust optimization 

– No distribution (but an uncertainty set) and 
measured by the worst possible outcome 
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Basic Modeling Questions 

• What makes a model consistent?  
• What form should objective take? 
• What form should the constraints take? 
• What can be assumed about the 

distributions?  
(Note: criticism of SP: not knowing 

distributions?)  
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Model Consistency 
• The model should not allow for solutions that cannot be 

implemented in reality 
   Example: A financial model should not allow arbitrage, i.e., 

ability to buy and sell and make an infinite profit 
   Conditions:  
Share price=$1 
Risk-free rate=10% 
Share can go to 0.5 or 2 with equal probability 
Call option with $1.50 exercise price available for $0.20 
Problem: Maximize value of portfolio at time 1  
                subject to limited downside risk 
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Consistency Example 

• Solve with upper bounds of 1 on each asset 
• Limit downside risk: 
      (E((Bond -W(1) )+)· 0.10 
Problems? 
Caution: “hidden arbitrage” may lead to quite 

different solutions from what was intended. 
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Discovering Arbitrage  

• Example with 2 branches 
• Start at S 
• Equally likely to uS or dS 
• Exercise K: dS<K<uS 
• Arbitrage free if @ x1, x2, x3  s. t.  
x1(uS)+x2(1+r)+x3(uS-K)¸ 0  
x1(dS)+x2(1+r)¸ 0  
Sx1+x2+Cx3=0 
x1(p u + (1-p)d)S + x2(1+r)+x3(p(uS-K))>0 for any 0<p<1 
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Using Theorem of Alternative 
(ToA:@ Ax¸ 0, bT x > 0 , 9 ¼¸0, s.t. -¼T A= bT  (=> 

C must make A lower rank) )  
or 9 ¼1¸ 0, ¼2 ¸ 0, ¼3 s.t.  
(p+¼1)u+(1-p+¼2)d=¼3, (p+¼1+(1-p)+¼

2
)(1+r)=¼3,  

     (¼1+p)((uS-K)/C)=¼3 
or for q=(p+¼

1
)(1+r)/¼3, 1-q= (1-p+¼2)(1+r)/¼3; 

Ri(s)=Value in state s/Value at 0=S1(i)/S0(i) 
q Ri(High) + (1-q) Ri(Lo)=(1+r) for any asset i 
General: 9 Q (risk-neutral or equivalent 

martingale measure) s.t. EQ[St(i)/St-1(i)]=(1+rt), 
for all i 
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Check Example 

If C=0.2, what happens? 
Try solving for q?  
Finding consistent value: 
x3=x2(1+r)(u-d)/(d(uS-K)), x1=-(1+r)x2/dS, 
 => C=((1+r)-dS)(uS-K))/((u-d)(1+r)) 
Here, u=2,d=0.5, S=1, K=1.5 
x1=2.2x2, x3=6.6x2,C=2/11=0.181818…  
q=0.4, 1-q=0.6 
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General Results 
• For each set of branches, 
The no-arbitrage condition must hold; so, 
   9 consistent Q  
If not, need to modify prices on each branch. 
Otherwise, results may have a bias that is hard to detect 

(arbitrage will over-whelm any other part of solution). 
Practical approach: relax constraints and check for unbounded 

and non-intuitive results 
Klaassen (1998) also shows how to collapse branches 

together (aggregation) and maintain consistency.  



Other Forms of Consistency 
• When are models consistent with rational 

preferences? 
– Axioms (e.g., von Neumann-Morganstern) 
⇒Expected utility 
- More information is better  

• When are models consistent other forms of 
behavioral choice? 

• Can we learn about the model’s form from 
choices? 
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Information Consistency: 
Paradoxes and Pitfalls 

Assumption: More information improves decision making or 
EVPI¸ 0 

Value of Information: “Blau’s dilemma” 
Suppose demand=b=0 w.p. 0.9 and 1 w.p. 0.1 
Problem:  

min x s.t. P[x¸ b]¸ 0.9 
Solution: x*=0   

With perfect information: xP=0 w.p. 0.9 and 1 w.p. 0.1 
EVPI = Exp. Value without Perfect Information – Exp. Value 

with Perfect Information  
          = 0 – 0.1 = -0.1 < 0  
(Same may be true with EVSampleInformation) 
For RO, let Ξ = {b | P[b]¸ 0.9} = {0} 
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Problems with “Paradox” 
• Utility may depend on information level 

– With no information, 0.9 may be acceptable but 
is not the same with more information 

– Cannot make direct comparisons in information 
value 

• Not including role of competitor (something 
not in model but in consideration) 
– Competitor may gain information as well 
– In this case, more information may not always 

be beneficial 
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What is Missing with Probabilistic 
Constraint? 

• May not correspond to “axioms of choice” or 
other properties  

• Example: Value-at-Risk:  
VaR1-®(x(»))=-inf{t|P(x(»)· t)¸ ®} 
Non-convexity x1={-1 w.p. 0.005, 0 w.p. 0.995} 
x2 ={-1 w.p. 0.005, 0 w.p. 0.995} 
VaR.99 (X1)=0,VaR.99(X2)=0 
Possible: VaR.99 ((X1+X2))=1 (with correlation) 
Alternatives? Coherent risk measures (but are they 

consistent with actual choice?) 
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Axioms and Coherent Risk 
Measures 

• Von Neumann-Morgenstern (rational) utility (negative risk): 
Complete, Transitive, Continuous, Monotonic, Substitutable (Independent) 
Implies convexity (concavity) of preferences 
Independence is like the additive term for coherent risk 
Both are unclear in practice. 

• R is a coherent risk measure if 
– R is convex and decreasing 
– R(x(ξ)+a)=R(x(ξ)) - a, a2 < 
– R(λ x(ξ)) = λ R(x(ξ)) 
Note: this is risk for positive outcomes (gains); if ξ  is a random loss, use 

x(ξ)+a=-ξ− a. 
 

 



Issues with Axioms 

• They may not represent actual choices 
– Prospect theory 

• They may be require information (to 
distinguish among choices) than what we 
can measure 
– Heyde and Kou (2004) show that distinguishing 

exponential from power tails may require an 
excessive number of observations 
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Do Axioms Capture Real 
Choices? 

• What is observed? (Kahnemann-Tversky 
prospect theory) 
– Targets define utility 
– Preference depends on closeness to targets 

Too  far 
away 

Close to 
1st goal 

Close to 
2nd goal 

Satisfied 

Traditional EUO 
applies 

Form for 
RO/Prob 
constrained 

Small 
prob. 
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Consistent Model: Formulation 
• Two-stage stochastic linear program: 
min z = cT x + Eξ [  min q(ω)T y(ω) ] 

s.t.  A x  = b  

T(ω) x + W y (ω) = h (ω) (a.s.) 

        x ¸ 0,  y(ω) ¸ 0 

Example: News vendor 
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News Vendor Formulation 

• x = number of papers to buy 
• c = cost of the papers minus price (-price+cost) 
• Ax =b (maybe limit on how many to buy) 
• Tx + Wy = h , x + y1 – y2 = h (demand) 
• y1 = unmet demand (no revenue) 
• y2 = papers not sold  
• q = (0,price-salvage) for y1 and y2  
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Recourse Function 
• Deterministic Equivalent Program 
min z =  cT x + Q (x) 
s.t.   Ax = b, x ¸ 0 
where 
 Q(x) = Eξ Q(x, ξ(ω))  and 
Q(x, ξ(ω))  
= miny { q(ω)T y|W y = h(ω)-T(ω) x, y ¸ 0 } 
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When Does a Solution Exist? 
(Feasibility)  • Definitions 

K1 =  { x | Ax = b, x ¸ 0 } 
K2 =  { x | Q(x) < 1 }, K2

P=Åξ2 Ξ{x | Q(x,ξ) < 1} 
x2 K1Å K2 

• Results: 
 K2

P=K2 if Ξ finite or W is fixed and ξ has finite second 
moments, which also means: 

K2 is closed and convex.  
If T is  fixed, K2 is polyhedral.  
Let ΞT be the support of the distribution of T. If h(ξ) and 

T(ξ) are independent and ΞT is polyhedral, then K2 is 
polyhedral. 
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Properties of the Objective 
Function 

• For a stochastic program with fixed recourse, 
Q(x,ξ) is  

a piecewise linear convex function in (h,T); 
a piecewise linear concave function in q; 
a piecewise linear convex function in x for all x in K = 

K1Å K2. 
• Proof: Linear supports – use duality. 
• With finite second moments, Q(x) is: 

Lipschitzian, convex, finite on K2, p.l. if Ξ finite, 
differentiable on K2 if F(ξ) abs. continuous 



Basic Properties 
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Special Cases 

• Complete recourse 
K2 = <n1 

• Relatively complete recourse 
 K2 ¾ K1 

• Simple recourse 
W=[ I, -I], q = (q+,q-) 
Holds for the news vendor problem 
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Optimality Conditions 

• Existence: suppose ξ has finite second moments 
and either K is bounded or Q becomes linear 
eventually, then optimum attained if it exists. 

• Conditions:  
Suppose a finite optimal value. A solution  x*2 K1, is 

optimal in DEP if and only if   
there exists some λ*2 <m1, µ*2 <n1

+, µ*Tx*=0, such 
that, 
-c+ ATλ* + µ* 2 ∂Q(x*). 
∂Q(x*) = E[∂Q(x*,ξ)] + N(K2,x*) 
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Duality 
Assume X= L1(Ω,B,µ;<n1+n2), the SP  is feasible, 

has a bounded optimal value, and satisfies 
relatively complete recourse, a solution 

(x*(ω),y*(ω)) is optimal if and only if there exist 
integrable functions on Ω, (λ*(ω),ρ*(ω),π*(ω)), 
such that cj - λ*(ω) A¢ j - ρ*(ω) - π*T(ω)T¢ j(ω) ¸ 0,   
      a.s., j=1,…,n1 

(cj - λ*(ω) A¢ j - ρ*(ω) - π*T(ω)T¢ j(ω))x*
j(ω)= 0, a.s., 

      j=1,…,n1,  
                 qj(ω)  - π*T(ω)W¢ j ¸ 0, a.s.,j=1,…,n2  
(qj(ω)  - π*T(ω)W¢ j)yj

*(ω) = 0, a.s., j=1,…,n2, 
and  Eω[ ρ*(ω)] = 0. 
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More Duality 
• General duals 
z*=sup <c,x> s.t.  x2 (N + b)Å(C+d)  
where N is a subspace, C is a cone 
w*= inf <b,π>+ <d,ρ> s.t.  c=π + ρ, π ? N,ρ 2 C* 

where C* is the polar cone to C, i.e., C*={y | yT x· 0 8 x2 C}  
• Why z*· w*? 

z*=<c,x*> = <π*+ρ*,x*> 
=<π*,x*> + <ρ*,x*> 
=<π*,n*+b>+<ρ*,v*+d> (n*2 N,v*2 C) 
 · <π*, b>+<ρ*, d> = w*  
 

• Why z*=w*?  
 (If not, some form of separation  
for linear problems but may have issues  
for general nonlinear problems.) 
 

  

x* 
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Dual SLP 

• Find (¸(!),½(!),¼(!))  to  
max E[¸(!)T b + ¼(!)T h(!)] 
s.t.  ¸(!)T A + ¼(!)T T(!) + ½(!)T ·  cT, a.s. 
      ¼(!)T W · q(!)T, a.s. 
      E(½(!))=0 
Note: possibly multiple rho values but all only differ 

in the constant. 
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Problems with No Complete 
Recourse 

• min x s.t. x¸ 0 + Q(x)  
Q(x)= 0 if y= x-»(!)¸ 0 
             1 o.w.  
            » » U(k/K), k=0,…,K-1 
Multipliers: ½k=1, ¼k=0, k=0,…,K-2 
                    ½K-1=1-K,¼K-1=K 
As K→ 1, sup(|½|)→ 1 
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Multistage Formulation (Linear 
Problems 

Linear Program: 
min z   = c1 x1   + Eξ2[min c2(ω) x2(ω2) 
  + …  +  EξH[min cH(ω) xH(ωH)]] 
s.t.    W1 x1 = h1, 
 T1(ω) x1  + W2 x2(ω2) =h2(ω), 
      ….. 
 TH-1(ω) xH-1(ωH-1)   + WH xH(ωH) = hH(ω), 
 x1¸ 0;  xt(ωt)¸ 0,  t=2,…,H 
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General Optimality Conditions 
General Form: 

min z = ∑t=1
1 ft(xt,xt+1) 

s.t xt – E[xt | Σt] = 0 ,a.s., 8 t¸ 0 
Need: 

nonanticipative feasibility, strict feasibility, finite horizon 
continuation 

Then x* is optimal with given initial conditions x0 iff  there exist πt 2 
Ln

1(Σ), t=0,…such that πt is nonanticipative 
E0(f0(x0,x1)-π0x0+π1x1) is a.s. minimized by x*1 over x1=E[x1|Σ1], and, for  

t > 0 
E[ft(xt,xt+1) - πt xt + πt+1xt+1] is a.s. minimized by (x*t,x*t+1)over xt=E[xtj 

Σt] and xt+1 =E[xt+1j Σt+1] 

and  Eπtk (xtk -x*tk) ! 0 as tk! 1, for all x2 dom z. 
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DP Version 
• Bellman Equation 
Vt(xt) = min ft(xt,ut) + E[Vt+± (xt+±)|xt,ut] 
Use: Vt+± (xt+± )= 
Vt(xt)+(∂ Vt/∂ t)(± t) 
+ (∂ Vt / ∂ x)(± x) 
+(1/2)(∂2 Vt / ∂x2)(± x)2  + o(±t

2) 
(Can use this to obtain continuous-time 

results) 
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Probabilistic Constraints 

• Basic (P) Model: 
min cT x 
s.t. P(Ai(!) x ¸ hi(!))¸ ®i, i=1,…,m1 
Examples: Probability of loss greater than some level 

is at most 1-®i; 
   Probability of not meeting demand is at most 1-®i; 
Note: sometimes these are given as separate (easier) 

and sometimes joint – unclear on utility 
implications  
(may be easier to estimate than others)  
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Issues with Probabilistic Constraints 
• Convexity:  
In general, the feasible region is not necessarily convex –  
   A=[1; -1] 
   h(!1)=[0; -1] h(!2)=[2; -3] 
  P(!1)=P(!2)=0.5 
Nice property: quasi-concavity (including log-concavity) : 
  P((1-¸)U+¸V)¸ min(P(U),P(V)) 
Convex: if A fixed and h q-concave, then convex. 
Nice properties with normal distribution, simple recourse 
In general, find some deterministic approximation. 
Results: equivalent recourse formulation (but often relies on 

knowing the solution).  



Additional Theory of 
Probabilistic Constraints 

• Finding deterministic (or stochastic) 
approximations:  
 
 
 
 

• or they hold with given confidence.  
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Forms of Sensitivity 
• For specific parameters:  
Convexity in constraint parameters (h, T) 
Concavity in linear objective  (q) 
• Also, note with respect to changes in distribution:  
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Additional Inferences: Inverse 
Optimization 

• Suppose given observed decisions x*: 
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Questions and Answers 

• When is a stochastic programming model 
consistent? 
– When it doesn’t contradict observations of 

behavior (e.g., prices and quantities in markets) 
• When is a stochastic program solvable? 

– When it has consistent properties (e.g., compact 
regions and continuous and bounded 
objectives) 
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More Q and Q 
• What should be true about an SP solution 

(and value)? (With some conditions:)   
– Convexity/concavity in certain parameters 
– Differentiability of objective wrt decisions 
– Properties linking prices (dual variables) and 

quantities (primal variables)  
• What can be inferred from solving one 

problem? 
– Bounds based on solutions (primal, dual) and 

distances between distributions 
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Conclusions/Further Results 
• Basic properties enable: 

– Discovery about choices:  
• Preferences (including risk) 
• Constraints 

– Bases for computational methods 
– Inferences about solutions from samples 
– Implications on what information to gather 

• More results on basic theory can help 
improve decisions and our understanding of 
how decisions are made  
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• Thanks and questions?  
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