Stochastic Programming: Basic Theory

John R. Birge
John.Birge@ChicagoBooth.edu www.chicagobooth.edu/fac/john.birge

Goals

- Provide background on the basics of stochastic programming theory
- Answer the following questions:
- When is a stochastic programming model consistent?
- When is a stochastic program solvable?
- What should be true about an SP solution?
- What can be inferred from solving one problem to another (sensitivity)?

General Model

- Choose $x \in X$ to:
minimize $E_{w}[f(x, w)]$
- where:
- X can be a general space (and might include dynamics probabilistic constraints)
- f can include some form of risk measure

Categories: Two or multi-stage, recourse (or not), probabilistic constrained, robust..

Program with (Fixed) Recourse

- Key: Decisions now (x), observe an uncertain outcome $(\xi(\omega))$, take a recourse action $y(\omega)$
- Formulation:

$$
\begin{aligned}
& \min c^{T} x+E_{\xi}[Q(x, \xi)] \\
& \text { s.t. } A x=b, x \geq 0 \\
& \text { where } Q(x, \xi)=\min \left\{q^{T} y \mid W y=h-T x, y \geq 0\right\}
\end{aligned}
$$

$\alpha(x)=E_{\xi}[Q(x, \xi)]$ is the recourse function and ξ consists of random components of $q,(W), h, T$

For the farmer in BL book, randomness is in T (yield).

Multi-Stage and Nonlinear Models

- Find $x_{1}, \ldots, x_{t}, \ldots \in X$
to minimize

$$
\sum_{t=1}{ }^{\infty} E\left[f_{t}\left(x_{t}, x_{t+1}\right)\right]
$$

- DP/Bellman form:
$\Psi_{t}\left(x, w_{t}\right)=\min _{u} f_{t+1}(x, u)+E\left[\Psi_{t}\left((x, u), w_{t+1}\right)\right]$
X, f include constraints and any restrictions
(Note: could also have continuous time.)

Relationships

- Statistical decision theory:
- Usually emphasizes information discovery and low dimensions
- Decision analysis
- Usually few alternatives
- Dynamic programming/Markov decision processes
- Usually low dimension (often finite state/action)

More Relationships

- Stochastic control
- Usually continuous time and very low dimension
- Machine learning
- Usually no distributions (online) and focus on regret (relative to best possible)
- Robust optimization
- No distribution (but an uncertainty set) and measured by the worst possible outcome

Basic Modeling Questions

- What makes a model consistent?
- What form should objective take?
- What form should the constraints take?
- What can be assumed about the distributions?
(Note: criticism of SP: not knowing distributions?)

Model Consistency

- The model should not allow for solutions that cannot be implemented in reality
Example: A financial model should not allow arbitrage, i.e., ability to buy and sell and make an infinite profit
Conditions:
Share price=\$1
Risk-free rate=10\%
Share can go to 0.5 or 2 with equal probability
Call option with $\$ 1.50$ exercise price available for $\$ 0.20$
Problem: Maximize value of portfolio at time 1
subject to limited downside risk

Consistency Example

- Solve with upper bounds of 1 on each asset
- Limit downside risk:

$$
\left(\mathrm{E}\left((\text { Bond }-\mathrm{W}(1))^{+}\right) \leq 0.10\right.
$$

Problems?
Caution: "hidden arbitrage" may lead to quite different solutions from what was intended.

Discovering Arbitrage

- Example with 2 branches
- Start at S
- Equally likely to uS or dS
- Exercise K: dS<K<uS
- Arbitrage free if $\nexists \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ s.t. $x_{1}(u S)+x_{2}(1+r)+x_{3}(u S-K) \geq 0$
$x_{1}(d S)+x_{2}(1+r) \geq 0$
$\mathrm{Sx}_{1}+\mathrm{x}_{2}+\mathrm{Cx}_{3}=0$
$x_{1}(p u+(1-p) d) S+x_{2}(1+r)+x_{3}(p(u S-K))>0$ for any $0<p<1$

Using Theorem of Alternative

(ToA: $\nexists \mathrm{Ax} \geq 0, \mathrm{~b}^{\mathrm{T}} \mathrm{x}>0 \Leftrightarrow \exists \pi \geq 0$, s.t. $-\pi^{T} \mathrm{~A}=\mathrm{b}^{\mathrm{T}}(=>$ C must make A lower rank))
or $\exists \pi_{1} \geq 0, \pi_{2} \geq 0, \pi_{3}$ s.t.
$\left(\mathrm{p}+\pi_{1}\right) \mathrm{u}+\left(1-\mathrm{p}+\pi_{2}\right) \mathrm{d}=\pi_{3},\left(\mathrm{p}+\pi_{1}+(1-\mathrm{p})+\pi_{2}\right)(1+\mathrm{r})=\pi_{3}$,

$$
\left(\pi_{1}+\mathrm{p}\right)((\mathrm{uS}-\mathrm{K}) / \mathrm{C})=\pi_{3}
$$

or for $\mathrm{q}=\left(\mathrm{p}+\pi_{1}\right)(1+\mathrm{r}) / \pi_{3}, 1-\mathrm{q}=\left(1-\mathrm{p}+\pi_{2}\right)(1+\mathrm{r}) / \pi_{3}$;
$\mathrm{R}_{\mathrm{i}}(\mathrm{s})=$ Value in state $\mathrm{s} /$ Value at $0=\mathrm{S}_{1}(\mathrm{i}) / \mathrm{S}_{0}(\mathrm{i})$
$q R_{i}$ (High) $+(1-q) R_{i}(L o)=(1+r)$ for any asset i
General: $\exists \mathbf{Q}$ (risk-neutral or equivalent martingale measure) s.t. $E_{Q}\left[S_{t}(i) / S_{t-1}(i)\right]=\left(1+r_{t}\right)$, for all i

Check Example

If $\mathrm{C}=0.2$, what happens?
Try solving for q ?
Finding consistent value:

$$
\begin{aligned}
& x_{3}=x_{2}(1+r)(u-d) /(d(u S-K)), x_{1}=-(1+r) x_{2} / d S, \\
& =>C=((1+r)-d S)(u S-K)) /((u-d)(1+r))
\end{aligned}
$$

Here, $u=2, \mathrm{~d}=0.5, \mathrm{~S}=1, \mathrm{~K}=1.5$
$x_{1}=2.2 x_{2}, x_{3}=6.6 x_{2}, C=2 / 11=0.181818 \ldots$
$\mathrm{q}=0.4,1-\mathrm{q}=0.6$

General Results

- For each set of branches,

The no-arbitrage condition must hold; so,
\exists consistent Q
If not, need to modify prices on each branch.
Otherwise, results may have a bias that is hard to detect (arbitrage will over-whelm any other part of solution).
Practical approach: relax constraints and check for unbounded and non-intuitive results
Klaassen (1998) also shows how to collapse branches together (aggregation) and maintain consistency.

Other Forms of Consistency

- When are models consistent with rational preferences?
- Axioms (e.g., von Neumann-Morganstern)
\Rightarrow Expected utility
- More information is better
- When are models consistent other forms of behavioral choice?
- Can we learn about the model's form from choices?

CHICHOOBOOTH
 Information Consistency:

Paradoxes and Pitfalls

Assumption: More information improves decision making or $\mathrm{EVPI} \geq 0$
Value of Information: "Blau's dilemma"
Suppose demand=b=0 w.p. 0.9 and 1 w.p. 0.1
Problem:

$$
\begin{gathered}
\min x \text { s.t. } P[x \geq b] \geq 0.9 \\
\text { Solution: } x^{*}=0
\end{gathered}
$$

With perfect information: $x^{P}=0$ w.p. 0.9 and 1 w.p. 0.1
EVPI = Exp. Value without Perfect Information - Exp. Value with Perfect Information

$$
=0-0.1=-0.1<0
$$

(Same may be true with EVSampleInformation)
For RO, let $\Xi=\{b \mid P[b] \geq 0.9\}=\{0\}$

Problems with "Paradox"

- Utility may depend on information level
- With no information, 0.9 may be acceptable but is not the same with more information
- Cannot make direct comparisons in information value
- Not including role of competitor (something not in model but in consideration)
- Competitor may gain information as well
- In this case, more information may not always be beneficial

What is Missing with Probabilistic Constraint?

- May not correspond to "axioms of choice" or other properties
- Example: Value-at-Risk:
$\operatorname{VaR}_{1-\alpha}(\mathrm{x}(\xi))=-\inf \{\mathrm{t} \mid \mathrm{P}(\mathrm{x}(\xi) \leq \mathrm{t}) \geq \alpha\}$
Non-convexity $\mathrm{x}_{1}=\{-1$ w.p. $0.005,0$ w.p. 0.995$\}$
$\mathrm{x}_{2}=\{-1$ w.p. $0.005,0$ w.p. 0.995$\}$
$\operatorname{VaR}_{.99}\left(\mathrm{X}_{1}\right)=0, \operatorname{VaR}_{.99}\left(\mathrm{X}_{2}\right)=0$
Possible: $\mathrm{VaR}_{.99}\left(\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right)\right)=1$ (with correlation)
Alternatives? Coherent risk measures (but are they consistent with actual choice?)

Axioms and Coherent Risk Measures

- Von Neumann-Morgenstern (rational) utility (negative risk):

Complete, Transitive, Continuous, Monotonic, Substitutable (Independent) Implies convexity (concavity) of preferences
Independence is like the additive term for coherent risk
Both are unclear in practice.

- R is a coherent risk measure if
- R is convex and decreasing
$-R(x(\xi)+a)=R(x(\xi))-a, a \in \Re$
$-R(\lambda x(\xi))=\lambda R(x(\xi))$
Note: this is risk for positive outcomes (gains); if ξ is a random loss, use

$$
x(\xi)+a=-\xi-a .
$$

Issues with Axioms

- They may not represent actual choices
- Prospect theory
- They may be require information (to distinguish among choices) than what we can measure
- Heyde and Kou (2004) show that distinguishing exponential from power tails may require an excessive number of observations

Do Axioms Capture Real Choices?

- What is observed? (Kahnemann-Tversky prospect theory)
- Targets define utility
- Preference depends on closeness to targets

Consistent Model: Formulation

- Two-stage stochastic linear program:
$\min \mathrm{z}=\mathrm{c}^{\mathrm{T}} \mathrm{x}+\mathrm{E}_{\xi}\left[\min \mathrm{q}(\omega)^{\mathrm{T}} \mathrm{y}(\omega)\right]$
s.t. $A x=b$
$T(\omega) x+W y(\omega)=h(\omega)($ a.s. $)$

$$
x \geq 0, \quad y(\omega) \geq 0
$$

Example: News vendor

News Vendor Formulation

- x = number of papers to buy
- $\mathrm{c}=$ cost of the papers minus price (-price+cost)
- $\mathrm{Ax}=\mathrm{b}$ (maybe limit on how many to buy)
- $\mathrm{Tx}+\mathrm{Wy}=\mathrm{h}, \mathrm{x}+\mathrm{y} 1-\mathrm{y} 2=\mathrm{h}$ (demand)
- $\mathrm{y} 1=$ unmet demand (no revenue)
- y2 = papers not sold
- $\mathrm{q}=(0$, price-salvage) for y 1 and y 2

Recourse Function

- Deterministic Equivalent Program $\min \mathrm{z}=\mathrm{c}^{\mathrm{T}} \mathrm{x}+\mathcal{Q}(\mathrm{x})$
s.t. $A x=b, x \geq 0$
where
$\mathcal{Q}(\mathrm{x})=\mathrm{E}_{\xi} \mathrm{Q}(\mathrm{x}, \xi(\omega))$ and
$\mathrm{Q}(\mathrm{x}, \xi(\omega))$
$=\min _{y}\left\{q(\omega)^{T} y \mid W y=h(\omega)-T(\omega) x, y \geq 0\right\}$

When Does a Solution Exist?

- Definitions

(Feasibility)

$$
\begin{aligned}
& \mathrm{K}_{1}=\{\mathrm{x} \mid \mathrm{Ax}=\mathrm{b}, \mathrm{x} \geq 0\} \\
& \mathrm{K}_{2}=\{\mathrm{x} \mid \mathcal{Q}(\mathrm{x})<\infty\}, \mathrm{K}_{2}^{\mathrm{P}}=\cap_{\xi \in \Xi}\{\mathrm{x} \mid \mathrm{Q}(\mathrm{x}, \xi)<\infty\} \\
& \mathrm{x} \in \mathrm{~K}_{1} \cap \mathrm{~K}_{2}
\end{aligned}
$$

- Results:
$K_{2}{ }^{\mathrm{P}}=\mathrm{K}_{2}$ if Ξ finite or W is fixed and ξ has finite second moments, which also means:
K_{2} is closed and convex.
If T is fixed, K_{2} is polyhedral.
Let Ξ_{T} be the support of the distribution of \mathbf{T}. If $\mathrm{h}(\xi)$ and $\mathrm{T}(\xi)$ are independent and Ξ_{T} is polyhedral, then K_{2} is polyhedral.

Properties of the Objective Function

- For a stochastic program with fixed recourse, $\mathrm{Q}(\mathrm{x}, \xi)$ is
a piecewise linear convex function in (h, T);
a piecewise linear concave function in q ;
a piecewise linear convex function in x for all x in $\mathrm{K}=$ $\mathrm{K}_{1} \cap \mathrm{~K}_{2}$.
- Proof: Linear supports - use duality.
- With finite second moments, $\mathcal{Q}(\mathrm{x})$ is:

Lipschitzian, convex, finite on K_{2}, p.l. if Ξ finite, differentiable on K_{2} if $\mathrm{F}(\xi)$ abs. continuous

Basic Properties

Special Cases

- Complete recourse

$$
\mathrm{K}_{2}=\Re^{\mathrm{n1}}
$$

- Relatively complete recourse

$$
\mathrm{K}_{2} \supset \mathrm{~K}_{1}
$$

- Simple recourse
$\mathrm{W}=[\mathrm{I},-\mathrm{I}], \mathrm{q}=\left(\mathrm{q}^{+}, \mathrm{q}^{-}\right)$
Holds for the news vendor problem

Optimality Conditions

- Existence: suppose $\boldsymbol{\xi}$ has finite second moments and either K is bounded or \mathcal{Q} becomes linear eventually, then optimum attained if it exists.
- Conditions:

Suppose a finite optimal value. A solution $x^{*} \in \mathrm{~K}_{1}$, is optimal in DEP if and only if
there exists some $\lambda^{*} \in \Re^{\mathrm{m} 1}, \mu^{*} \in \Re^{\mathrm{n} 1}{ }_{+}, \mu^{* T} \mathrm{x}^{*}=0$, such that,

$$
\begin{aligned}
& -\mathrm{c}+\mathrm{A}^{\mathrm{T}} \lambda^{*}+\mu^{*} \in \partial \mathcal{Q}\left(\mathrm{x}^{*}\right) . \\
& \partial \mathcal{Q}\left(\mathrm{x}^{*}\right)=\mathrm{E}\left[\partial \mathrm{Q}\left(\mathrm{x}^{*}, \xi\right)\right]+\mathrm{N}\left(\mathrm{~K}_{2}, \mathrm{x}^{*}\right)
\end{aligned}
$$

Duality

Assume $\mathrm{X}=\mathcal{L}_{\infty}\left(\Omega, \mathcal{B}, \mu ; \Re^{\mathrm{n} 1+\mathrm{n} 2}\right)$, the SP is feasible, has a bounded optimal value, and satisfies relatively complete recourse, a solution ($\mathrm{x}^{*}(\omega), \mathrm{y}^{*}(\omega)$) is optimal if and only if there exist integrable functions on $\Omega,\left(\lambda^{*}(\omega), \rho^{*}(\omega), \pi^{*}(\omega)\right)$, such that $\mathrm{c}_{\mathrm{j}}-\lambda^{*}(\omega) \mathrm{A}_{\cdot \mathrm{j}}-\rho^{*}(\omega)-\pi^{* T}(\omega) \mathrm{T}_{\cdot \mathrm{j}}(\omega) \geq 0$, a.s., $j=1, \ldots, n_{1}$
$\left(c_{j}-\lambda^{*}(\omega) A_{\cdot j}-\rho^{*}(\omega)-\pi^{* T}(\omega) T_{\cdot j}(\omega)\right) x_{j}^{*}(\omega)=0$, a.s., $j=1, \ldots, n_{1}$,

$$
\mathrm{q}_{\mathrm{j}}(\omega)-\pi^{* T}(\omega) \mathrm{W}_{\cdot \mathrm{j}} \geq 0, \text { a.s. } \mathrm{j}=1, \ldots, \mathrm{n}_{2}
$$

$\left(\mathrm{q}_{\mathrm{j}}(\omega)-\pi^{*}(\omega) \mathrm{W}_{. j}\right) \mathrm{y}_{\mathrm{j}}^{*}(\omega)=0$, a.s., $\mathrm{j}=1, \ldots, \mathrm{n}_{2}$,
and $E_{\omega}\left[\rho^{*}(\omega)\right]=0$.

More Duality

- General duals
$\mathrm{z}^{*}=\sup <\mathrm{c}, \mathrm{x}>$ s.t. $\mathrm{x} \in(\mathrm{N}+\mathrm{b}) \cap(\mathrm{C}+\mathrm{d})$
where N is a subspace, C is a cone
$\mathrm{w}^{*}=\inf <\mathrm{b}, \pi>+<\mathrm{d}, \mathrm{\rho}>$ s.t. $\mathrm{c}=\pi+\rho, \pi \perp \mathrm{N}, \rho \in \mathrm{C}^{*}$
where C^{*} is the polar cone to C, i.e., $C^{*}=\left\{y \mid y^{T} x \leq 0 \forall x \in C\right\}$
- Why $\mathrm{z}^{*} \leq \mathrm{w}^{*}$?

$$
\begin{aligned}
& \mathrm{z}^{*}=<\mathrm{c}, \mathrm{x}^{*}>=<\pi^{*}+\rho^{*}, \mathrm{x}^{*}> \\
& =<\pi^{*}, \mathrm{x}^{*}>+<\rho^{*}, \mathrm{x}^{*}> \\
& =<\pi^{*}, \mathrm{n}^{*}+\mathrm{b}>+<\rho^{*}, \mathrm{v}^{*}+\mathrm{d}>\left(\mathrm{n}^{*} \in \mathrm{~N}, \mathrm{v}^{*} \in \mathrm{C}\right) \\
& \leq<\pi^{*}, \mathrm{~b}>+<\rho^{*}, \mathrm{~d}>=\mathrm{w}^{*}
\end{aligned}
$$

- Why $\mathrm{z}^{*}=\mathrm{w}^{*}$?
(If not, some form of separation for linear problems but may have issues for general nonlinear problems.)

Dual SLP

- Find $(\lambda(\omega), \rho(\omega), \pi(\omega))$ to $\max \mathrm{E}\left[\lambda(\omega)^{\mathrm{T}} \mathrm{b}+\pi(\omega)^{\mathrm{T}} \mathrm{h}(\omega)\right]$
s.t. $\lambda(\omega)^{\mathrm{T}} \mathrm{A}+\pi(\omega)^{\mathrm{T}} \mathrm{T}(\omega)+\rho(\omega)^{\mathrm{T}} \leq$ c $^{\mathrm{T}}$, a.s.
$\pi(\omega)^{\mathrm{T}} \mathrm{W} \leq \mathrm{q}(\omega)^{\mathrm{T}}$, a.s.
$\mathrm{E}(\rho(\omega))=0$
Note: possibly multiple rho values but all only differ in the constant.

Problems with No Complete Recourse

- $\min x$ s.t. $x \geq 0+\mathcal{Q}(x)$
$\mathcal{Q}(\mathrm{x})=0$ if $\mathrm{y}=\mathrm{x}-\xi(\omega) \geq 0$
∞ o.w.

$$
\xi \sim \mathrm{U}(\mathrm{k} / \mathrm{K}), \mathrm{k}=0, \ldots, \mathrm{~K}-1
$$

Multipliers: $\rho^{k=1}, \pi^{k}=0, \mathrm{k}=0, \ldots, \mathrm{~K}-2$

$$
\rho^{K-1}=1-\mathrm{K}, \pi^{K-1}=\mathrm{K}
$$

As $\mathrm{K} \rightarrow \infty, \sup (|\rho|) \rightarrow \infty$

Multistage Formulation (Linear

 Problems
Linear Program:

$\min z=c^{1} x^{1}+\mathrm{E}_{\xi^{2}}\left[\min c^{2}(\omega) x^{2}\left(\omega^{2}\right)\right.$
$\left.+\ldots+\mathrm{E}_{\xi} H\left[\min c^{H}(\omega) x^{H}\left(\omega^{H}\right)\right]\right]$

$$
\text { s.t. } \quad W^{1} x^{1}=h^{1} \text {, }
$$

$$
T^{1}(\omega) x^{1}+W^{2} x^{2}\left(\omega^{2}\right)=h^{2}(\omega),
$$

$$
T^{H-1}(\omega) x^{H-1}\left(\omega^{H-1}\right)+W^{H} x^{H}\left(\omega^{H}\right)=h^{H}(\omega),
$$

$$
x^{1} \geq 0 ; \quad x^{t}\left(\omega^{t}\right) \geq 0, \quad t=2, \ldots, H
$$

General Optimality Conditions

General Form:

$$
\begin{aligned}
& \min z=\sum_{t=1}^{\infty} f_{t}\left(x_{t}, x_{t+1}\right) \\
& \text { s.t } x_{t}-E\left[x_{t} \mid \Sigma_{t}\right]=0, a . \text { s., } \forall t \geq 0
\end{aligned}
$$

Need:
nonanticipative feasibility, strict feasibility, finite horizon continuation
Then x^{*} is optimal with given initial conditions x^{0} iff there exist $\pi^{t} \in$ $L^{n}{ }_{1}(\Sigma), t=0, \ldots$ such that π^{t} is nonanticipative
$E^{0}\left(f^{0}\left(x^{0}, x^{1}\right)-\pi^{0} x^{0}+\pi^{1} x^{1}\right)$ is a.s. minimized by $x^{* 1}$ over $x^{1}=E\left[x^{1} \mid \Sigma^{1}\right]$, and, for $t>0$
$E\left[f^{t}\left(x^{t}, x^{t+1}\right)-\pi^{t} x^{t}+\pi^{t+1} x^{t+1}\right]$ is a.s. minimized by $\left(x^{* t}, x^{*+1}\right)$ over $x^{t}=E\left[x^{t} /\right.$
2] and $x^{t+1}=E\left[x^{t+1} / \Sigma^{+1}\right]$
and $E \pi^{t k}\left(x^{t k}-x^{*} k\right) \rightarrow 0$ as $t_{k} \rightarrow \infty$, for all $x \in \operatorname{dom} z$.
© JRBirge

DP Version

- Bellman Equation
$\mathrm{V}_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}\right)=\min \mathrm{f}_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}, \mathrm{u}_{\mathrm{t}}\right)+\mathrm{E}\left[\mathrm{V}_{\mathrm{t}+\delta}\left(\mathrm{x}_{\mathrm{t}+\delta}\right) \mid \mathrm{x}_{\mathrm{t}}, \mathrm{u}_{\mathrm{t}}\right]$
Use: $\mathrm{V}_{\mathrm{t}+\delta}\left(\mathrm{x}_{\mathrm{t}+\delta}\right)=$
$\mathrm{V}_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}\right)+\left(\partial \mathrm{V}_{\mathrm{t}} / \partial \mathrm{t}\right)(\delta \mathrm{t})$
$+\left(\partial V_{t} / \partial \mathrm{x}\right)(\delta \mathrm{x})$
$+(1 / 2)\left(\partial^{2} V_{t} / \partial x^{2}\right)(\delta \mathrm{x})^{2}+\mathrm{o}\left(\delta_{\mathrm{t}}^{2}\right)$
(Can use this to obtain continuous-time results)

Probabilistic Constraints

- Basic (P) Model: $\min c^{\mathrm{T}} \mathrm{x}$
s.t. $\mathrm{P}\left(\mathrm{A}^{\mathrm{i}}(\omega) \mathrm{x} \geq \mathrm{h}^{\mathrm{i}}(\omega)\right) \geq \alpha^{i}, \mathrm{i}=1, \ldots, \mathrm{~m}_{1}$

Examples: Probability of loss greater than some level
is at most 1- α_{i};
Probability of not meeting demand is at most 1- α_{i};
Note: sometimes these are given as separate (easier) and sometimes joint - unclear on utility implications
(may be easier to estimate than others)

Issues with Probabilistic Constraints

- Convexity:

In general, the feasible region is not necessarily convex -

$$
\begin{aligned}
& \mathrm{A}=[1 ;-1] \\
& \mathrm{h}\left(\omega_{1}\right)=[0 ;-1] \mathrm{h}\left(\omega_{2}\right)=[2 ;-3] \\
& \mathrm{P}\left(\omega_{1}\right)=\mathrm{P}\left(\omega_{2}\right)=0.5
\end{aligned}
$$

Nice property: quasi-concavity (including log-concavity) : $\mathrm{P}((1-\lambda) \mathrm{U}+\lambda \mathrm{V}) \geq \min (\mathrm{P}(\mathrm{U}), \mathrm{P}(\mathrm{V}))$
Convex: if A fixed and h q-concave, then convex.
Nice properties with normal distribution, simple recourse
In general, find some deterministic approximation.
Results: equivalent recourse formulation (but often relies on knowing the solution).

Additional Theory of Probabilistic Constraints

- Finding deterministic (or stochastic) approximations:
- or they hold with given confidence.

Forms of Sensitivity

- For specific parameters:

Convexity in constraint parameters (h, T)
Concavity in linear objective (q)

- Also, note with respect to changes in distribution:

Additional Inferences: Inverse Optimization

- Suppose given observed decisions χ^{*} :

Questions and Answers

- When is a stochastic programming model consistent?
- When it doesn't contradict observations of behavior (e.g., prices and quantities in markets)
- When is a stochastic program solvable?
- When it has consistent properties (e.g., compact regions and continuous and bounded objectives)

More Q and Q

- What should be true about an SP solution (and value)? (With some conditions:)
- Convexity/concavity in certain parameters
- Differentiability of objective wrt decisions
- Properties linking prices (dual variables) and quantities (primal variables)
- What can be inferred from solving one problem?
- Bounds based on solutions (primal, dual) and distances between distributions

Conclusions/Further Results

- Basic properties enable:
- Discovery about choices:
- Preferences (including risk)
- Constraints
- Bases for computational methods
- Inferences about solutions from samples
- Implications on what information to gather
- More results on basic theory can help improve decisions and our understanding of how decisions are made
- Thanks and questions?

