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Uncertain Outcomes and Risk

Why Probabilistic Models?

Wealth of results of probability theory

Connection to real data via statistics

Universal language (engineering, economics, medicine, . . . )

Probability space (Ω,F ,P)
Decision space X
Random outcome (e.g., cost) Zx(ω), Z : X × Ω→ R

Expected Value Model

min
x
E[Zx ] =

∫
Ω

Zx(ω) P(dω)

It optimizes the outcome on average (Law of Large Numbers?)

What is Risk?

Existence of unlikely and undesirable outcomes - high Zx(ω) for some ω
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Classical Utility Models

Expected Utility Models (von Neumann and Morgenstern, 1944)

min
x∈X
E

[
u(Zx)

] (
=

∫
Ω

u
(
Zx(ω)

)
dP(ω)

)
u : R→ R is a nondecreasing disutility function

Rank Dependent Utility (Distortion) Models (Quiggin, 1982; Yaari, 1987)

min
x∈X

∫ 1

0
F−1

Zx
(p) dw(p) F−1

Zx
(·) - quantile function

w : [0, 1]→ R is a nondecreasing rank dependent utility function

Existence of utility functions is derived from systems of axioms,
but in practice they are difficult to elicit
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Axioms of Expected Utility Theory

W is a lottery of Z and V with probabilities α ∈ (0, 1) and (1 − α), if the
probability measure µW induced by W on R is the corresponding convex
combination of the probability measures µZ and µV of Z and V :

µW = αµZ + (1 − α)µV .

We write the lottery symbolically as

W = αZ ⊕ (1 − α)V .

For law invariant preferences on the space of random vectors with values in
R, von Neumann introduced the axioms:
Independence Axiom: For all Z ,V ,W ∈ Z one has

Z C V =⇒ αZ ⊕ (1 − α)W C αV ⊕ (1 − α)W , ∀α ∈ (0, 1)

Archimedean Axiom: If Z C V C W , then α, β ∈ (0, 1) exist such that

αZ ⊕ (1 − α)W C V C βZ ⊕ (1 − β)W
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Expected Utility

Integral Representation

Suppose the total preorder E on Z is law invariant, and satisfies the
independence and Archimedean axioms. Then it has an “affine” numerical
representation U : Z → R:

U(αZ ⊕ (1 − α)V) = αU(Z) + (1 − α)U(V).

If E is weakly continuous, then a continuous and bounded function
u : R→ R exists, such that

U(Z) = E
[
u(Z)

]
=

∫
Ω

u
(
Z(ω)

)
P(dω).

New proof by separation theorem - D. & R. 2012

In a more general setting, we may consider only r.v. with finite moments,
and then the boundedness condition on u(·) can be relaxed.
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Risk-Averse Utility

U(Z) = E
[
u(Z)

]
=

∫
Ω

u
(
Z(ω)

)
P(dω)

Monotonicity

The total preorder E is monotonic with respect to the partial order ≤, if
Z ≤ V =⇒ Z E V .

We focus on Z containing integrable random vectors.

Risk Aversion

A preference relation E on Z is risk-averse, if E[Z |G] E Z , for every Z ∈ Z
and every σ-subalgebra G of F .

Nondecreasing Convex Disutility

Suppose a total preorder E on Z is weakly continuous, monotonic,
risk-averse, and satisfies the independence axiom. Then the utility function
u : R→ R is nondecreasing and convex.
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Axioms of Dual Utility Theory (Yaari 1987)

Real random variables Zi , i = 1, . . . , n, are comonotonic, if(
Zi(ω) − Zi(ω

′)
)(

Zj(ω) − Zj(ω
′)
)
≥ 0

for all ω,ω′ ∈ Ω and all i, j = 1, . . . , n.

Dual Independence Axiom: For all comonotonic random variables Z , V ,
and W in Z one has

Z C V =⇒ αZ + (1 − α)W C αV + (1 − α)W , ∀α ∈ (0, 1)

Dual Archimedean Axiom: For all comonotonic random variables Z , V , and
W in Z, satisfying the relations

Z C V C W ,

there exist α, β ∈ (0, 1) such that

αZ + (1 − α)W C V C βZ + (1 − β)W
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Dual Utility

Affine Representation

If the total preorder E on Z is law invariant, and satisfies the dual
independence and Archimedean axioms, then a numerical representation
U : Z → R of E exists, which satisfies for all comonotonic Z ,V ∈ Z and all
α, β ∈ R+ the equation

U(αZ + βV) = αU(Z) + βU(V).

Integral Representation

Suppose Z is the set of bounded random variables. If, additionally, E is
continuous in L1 and monotonic, then a bounded, nondecreasing, and
continuous function w : [0, 1]→ R+ exists, such that

U(Z) =

∫ 1

0
F−1

Z (p) dw(p), Z ∈ Z.

Proof by separation - D. & R. 2012
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Risk Averse Dual Utility

U(Z) =

∫ 1

0
F−1

Z (p) dw(p), Z ∈ Z (*)

Risk Aversion

A preference relation E on Z is risk-averse, if E[Z |G] E Z , for every Z ∈ Z
and every σ-subalgebra G of F .

Convex Rank-Dependent Utility

Suppose a total preorder E onZ is continuous, monotonic, and satisfies the
dual independence axiom. Then it is risk-averse if and only if it has the
integral representation (*) with a nondecreasing and convex function
w : [0, 1]→ [0, 1] such that w(0) = 0 and w(1) = 1.
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Mean–Risk Models

Two Objectives

Minimize the expected outcome, the mean E[Zx ]

Minimize a scalar measure of uncertainty of Zx , the risk r[Zx ]

r[Z ] = Var[Z ] (Markowitz’ model)

σ+
p [Z ] =

(
E[(Z − EZ)p

+]
)1/p

(semideviation)

δ+
α [Z ] = min

η
E
[
max

(
η − Z ,

α

1 − α
(Z − η)

)]
(deviation from quantile)

r
[
Zx

]
is nonlinear w.r.t. probability and possibly nonconvex in x
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Example: Portfolio Optimization

R1,R2, . . . ,Rn - random return rates of securities
x1, x2, . . . , xn - fractions of the capital invested in the securities

Return rate of the portfolio (negative of)

Zx = −
(
R1x1 + R2x2 + · · ·+ Rnxn)

Risk Optimization with Fixed Mean

min
x

r
[
Zx

]
s.t. E

[
Zx

]
= µ (parameter)

x ∈ X0.

Combined Mean–Risk Optimization

min
x∈X0

ρ
[
Zx

]
= E

[
Zx

]
+ κ r

[
Zx

]
, 0 ≤ κ ≤ κmax

Interesting applications of parametric optimization
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Nonlinear Programming Formulations for Discrete Distributions

Suppose Z has finitely many realizations z1, z2, . . . , zS

with probabilities p1, p2, . . . , pS

ρ(Z) = E[Z ] + κσ+
m[Z ] = E[Z ] + κ

(
E[(Z − EZ)m

+]
)1/m

=
∑S

s=1 pszs + κ

(∑S
s=1 ps

(
zs −

∑S
j=1 pjzj

)m

+

)1/m

Equivalent Problem (for m = 1 - linear programming)

ρ(Z) = min
v ,µ

µ + κ

( S∑
s=1

psvm
s

)1/m

s.t. µ =
S∑

s=1

pszs

vs ≥ zs − µ, s = 1, . . . ,S

vs ≥ 0, s = 1, . . . ,S

Andrzej Ruszczyński Formulations and Risk Aversion



Application to Portfolios

Suppose the vector of return rates has S realizations
with probabilities p1, p2, . . . , pS

Rjs - return rate of asset j = 1, . . . , n in scenario s = 1, . . . ,S

Equivalent Problem (for m = 1 - linear programming)

min
x,z,v ,µ

µ + κ

( S∑
s=1

vm
s

)1/m

s.t. µ =
S∑

s=1

pszs

zs = −
n∑

j=1

Rsjxj , s = 1, . . . ,S

vs ≥ zs − µ, s = 1, . . . ,S

vs ≥ 0, s = 1, . . . ,S

x ∈ X0
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Basket of 719 Securities. Mean–Semideviation Model
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Key Requirement: Monotonicity

ρ(Z) = E[Z ] + κ r[Z ]

Consistency with Stochastic Dominance (Ogryczak–R., 1997)

E[u(Z)] ≤ E[u(W)], ∀ nondecreasing and convex u(·)⇒ ρ[Z ] ≤ ρ[W ]

Consistency with Pointwise Order (Artzner et. al., 1999)

Z ≤ W a.s. ⇒ ρ[Z ] ≤ ρ[W ]

Mean–semideviation and mean–deviation from quantile models are
consistent for 0 ≤ κ ≤ 1, but not mean–variance.

Unique optimal solutions of consistent optimization models

min
x∈X

ρ(Zx)

cannot be strictly dominated (in the corresponding sense)
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Coherent Risk Measures

Space of uncertain outcomes Z = Lp(Ω,F ,P), p ∈ [1,∞]

A functional ρ : Z → R is a coherent risk measure if it satisfies the following
axioms

Convexity: ρ(λZ + (1 − λ)W) ≤ λρ(Z) + (1 − λ)ρ(W)
∀ λ ∈ (0, 1), Z ,W ∈ Z

Monotonicity: If Z ≤ W then ρ(Z) ≤ ρ(W), ∀ Z ,W ∈ Z

Translation Equivariance: ρ(Z + a) = ρ(Z) + a, ∀ Z ∈ Z, a ∈ R

Positive Homogeneity: ρ(τZ) = τρ(Z), ∀ Z ∈ Z, τ ≥ 0

Kijima-Ohnishi (1993) – no monotonicity
Artzner-Delbaen-Eber-Heath (1999–) - space L∞
R.-Shapiro (2005) – spaces Lp , . . .

Good news: E[Z ] is coherent
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Andrzej Ruszczyński Formulations and Risk Aversion



Coherent Risk Measures

Space of uncertain outcomes Z = Lp(Ω,F ,P), p ∈ [1,∞]

A functional ρ : Z → R is a coherent risk measure if it satisfies the following
axioms

Convexity: ρ(λZ + (1 − λ)W) ≤ λρ(Z) + (1 − λ)ρ(W)
∀ λ ∈ (0, 1), Z ,W ∈ Z

Monotonicity: If Z ≤ W then ρ(Z) ≤ ρ(W), ∀ Z ,W ∈ Z

Translation Equivariance: ρ(Z + a) = ρ(Z) + a, ∀ Z ∈ Z, a ∈ R

Positive Homogeneity: ρ(τZ) = τρ(Z), ∀ Z ∈ Z, τ ≥ 0

Kijima-Ohnishi (1993) – no monotonicity
Artzner-Delbaen-Eber-Heath (1999–) - space L∞
R.-Shapiro (2005) – spaces Lp , . . .

Good news: E[Z ] is coherent
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Coherence of Mean–Semideviation

For simplicity, semideviation of order m = 1 with κ = 1:

ρ(Z) = E[Z ] + E
[
(Z − EZ)+

]
= E

{
max

(
E[Z ],Z

)}
Convexity follows from the convexity of Z 7→ max

(
E[Z ],Z

)
a.s.

Monotonicity follows from monotonicity of Z 7→ max
(
E[Z ],Z

)
a.s.

Translation follows from translation of Z 7→ max
(
E[Z ],Z

)
a.s.

Pos. Homogeneity follows from pos. homogeneity of max
(
E[Z ],Z

)
a.s.

Convex combination of coherent measures of risk is coherent

ρ(Z) = λ1ρ1(Z) + λ2ρ2(Z) + · · ·+ λLρL (Z)

λ1 + λ2 + · · ·+ λL = 1,

λ1 ≥ 0, λ2 ≥ 0, . . . , λL ≥ 0

ρ(Z) = E[Z ] + κE
[
(Z − EZ)+

]
is coherent for κ ∈ [0, 1]
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Value at Risk

The Value at Risk at level α ∈ (0, 1) of a random cost Z ∈ Z:

V@R+
α (Z)

M
= inf {η : FZ (η) ≥ 1 − α} = F−1

Z (1 − α)

Monotonicity: Z ≤ V =⇒ V@R+
α (Z) ≤ V@R+

α (V)
Translation: V@R+

α (Z + c) = V@R+
α (Z) + c, for all c ∈ R

Positive Homogeneity: V@R+
α (γZ) = γV@R+

α (Z), for all γ ≥ 0
However, it is not convex

Counterexample: Two independent variables

Z =

0 with probability 1 − p

1 with probability p
V =

0 with probability 1 − p

1 with probability p

For p < α < 1 we have V@R+
α (Z) = V@R+

α (V) = 0
If p < α < 1 − (1 − p)2, we have non-convexity

V@R+
α

(
λZ + (1 − λ)V

)
> 0 = λV@R+

α (Z) + (1 − λ) V@R+
α (V)
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Average Value at Risk

AV@R+
α (Z)

M
=

1
α

∫ α

0
V@R+

β (Z) dβ

If the (1 − α)-quantile of Z is unique

AV@R+
α (Z) =

1
α

∫ ∞

V@R+
α (Z)

z dFZ (z) = E
[
Z |Z ≥ V@R+

α (Z)
]

Extremal representation

AV@R+
α (Z) = inf

η∈R

{
η +

1
α
E
[
(Z − η)+

]}
The minimizer η = V@Rα(Z)

Connection to weighted deviation from α-quantile:

δ+
α (Z) = AV@R+

α (Z) − E[Z ], α ∈ [0, 1].
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Coherence of Average Value at Risk

Extremal representation

AV@R+
α (Z) = inf

η∈R

{
η +

1
α
E
[
(Z − η)+

]}
Convexity follows from joint convexity in (η,Z) of

{
· · ·

}
Monotonicity follows from monotonicity w.r.t. Z of

{
· · ·

}
Translation follows from η↔ η − c in

{
· · ·

}
Pos. Homogeneity follows from pos. homogeneity in (η,Z) of

{
· · ·

}
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Linear Programming Representation of AV@R

Suppose Z has finitely many realizations z1, z2, . . . , zS

with probabilities p1, p2, . . . , pS

min
v ,η

η +
1
α

S∑
s=1

psvs

s.t. vs ≥ zs − η, s = 1, . . . ,S

vs ≥ 0, s = 1, . . . ,S

For portfolios we have to add the constraints

zs = −
n∑

j=1

Rsjxj , s = 1, . . . ,S

x ∈ X0

and include z and x into the decision variables
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Conjugate Duality of Risk Measures

Pairing of a linear topological space Z with a linear topological space Y
of regular signed measures on Ω with the bilinear form〈

µ,Z
〉

= Eµ[Z ] =

∫
Ω

Z(ω) µ(dω)

We assume standard conditions on pairing and the polarity: (Z+)◦ = Y−

Dual Representation Theorem

If ρ : Z → R is a lower semicontinuous∗ coherent risk measure, then

ρ(Z) = max
µ∈A

∫
Ω

Z(ω) µ(dω), ∀Z ∈ Z

with a convex closed A ⊂ P (set of probability measures in Y).

Delbaen (2001), Föllmer–Schied (2002), R.–Shapiro (2005),

Rockafellar–Uryasev–Zabarankin (2006), . . .
∗ Lower semicontinuity is automatic if ρ is finite and Z is a Banach lattice
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Universality of AV@R

Z ∼ V means that Z and V have the same distribution, µZ = µV .
ρ : Z → R is law invariant if Z ∼ V =⇒ ρ(Z) = ρ(V)

Kusuoka Theorem

If (Ω,F ,P) is atomless and ρ : L1(Ω,F ,P)→ R is law invariant, then

ρ(Z) = sup
m∈M

∫ 1

0
AV@R+

α (Z) m(dα)

whereM is a convex set of probability measures on (0, 1].

Spectral measure

ρ(V) =

∫ 1

0
AV@R+

α (Z) m(dα)

Spectral measures have dual utility form:

ρ(Z) =

∫ 1

0
F−1

Z (β) dw(β)
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Optimization of Risk Measures

“Minimize” over x ∈ X a random outcome Zx(ω) = f(x, ω), ω ∈ Ω

Composite Optimization Problem

min
x∈X

ρ(Zx) (P)

Theorem

Let x 7→ Zx(ω) be convex and ρ(·) be coherent. Suppose that x̂ ∈ X is an
optimal solution of (P) and ρ(·) is continuous at Zx̂ . Then there exists a
probability measure µ̂ ∈ ∂ρ(Zx̂) ⊆ A such that x̂ solves

min
x∈X
Eµ̂[Zx ] = min

x∈X
max
µ∈A
Eµ[Zx ]

We also have the duality relation:

min
x∈X

ρ(Zx) = max
µ∈A

inf
x∈X
Eµ[Zx ]
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Duality in Portfolio Optimization - Game Model

Suppose the vector of return rates of assets has S realizations
Rjs - return rate of asset j = 1, . . . , n in scenario s = 1, . . . ,S
Portfolio return (negative) in scenario s

Zs(x) = −
n∑

j=1

Rjsxj

Portfolio Problem
min
x∈X

ρ
(
Z(x)

)
By homogeneity, we may assume that

∑n
j=1 xj = 1

Equivalent Matrix Game

max
x∈X

min
µ∈A

n∑
j=1

S∑
s=1

xjRjsµs

x - mixed strategy of the investor
µ - mixed strategy of the opponent (market)
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Two-Stage Model

Expected-Value Model
min
x∈X

cT x + E
[
Q(x))

]
where Q(x) is the optimal value of the random second-stage problem

min qT y

s.t. Tx + Wy = h,

y ≥ 0,

(q,T , h) - random data of the second-stage problem

• c is deteministic

• (q,T , h) become known after the first stage

For finite scenario case - powerful decomposition methods
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Two-Stage Model: Risk-Averse Version

min
x∈X

ρ1

(
cT x + Q(x)

)
where Q(x) is the optimal value of the second-stage problem

Q(x) = min ρ2

(
qT y)

s.t. Tx + Wy = h,

y ≥ 0,

and ξ = (q,T , h) - random data of the second-stage problem

• c is random

• (T , h) become known after the first stage

• q may be still unknown (conditional distribution)
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Risk-Averse Two-and-Half-Stage Model. Finite Scenario Case

Second-stage scenarios: cs ,Ts , hs , s = 1, . . . ,S
Final scenarios: qsj , j ∈ J(s)

min
x∈X

ρ1

(
cT x + Q(x)

)
where Q(x) is the optimal value of the second-stage problem;
In scenario s its value is

Qs(x) = min ρ2s

(
qT

s y)

s.t. Tsx + Wy = hs ,

y ≥ 0,

qs is random and has realizations qsj , j ∈ J(s)

This structure of the problem follows from the general theory
of dynamic measures of risk (lecture tomorrow)
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Dual Representation of the Two-Stage Problem

Risk-averse first-stage problem

min
x∈X

max
µ∈A

S∑
s=1

µs

[
cT

s x + Qs(x)
]

Risk-averse second-stage problem

Qs(x) = min
y

max
ν∈Bs

∑
j∈J(s)

νjqT
j y

s.t. Tsx + Wsy = hs (multipliers πs)

y ≥ 0

The sets of probability measures:

A = ∂ρ1(0)

Bs = ∂ρ2s(0)
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Stochastic Dominance Constraints (Dentcheva–R., 2003–)

Zx - random outcome (e.g., cost)
Y - benchmark random outcome, e.g. Y(ω) = Zx̄(ω) for some x̄ ∈ X

New Model

min E[Zx ] (or some other objective)

subject to Zx �U Y (stochastic ordering constraint)

x ∈ X

Zx is preferred over Y by all decision makers having disutility functions in
the generatorU:

E[u(Zx)] ≤ E[u(Y)] ∀ u ∈ U

All nondecreasing u(·) - first order stochastic dominance �st

All nondecreasing convex u(·) - increasing convex order �icx

Andrzej Ruszczyński Formulations and Risk Aversion



Dominance Constrained Optimization

min E[Zx ]

subject to Zx �icx Y

x ∈ X
X - convex set in X (separable locally convex Hausdorff vector space)
x 7→ Zx is a continuous operator from X to L1(Ω,F ,P)
x 7→ Zx(ω) is convex for P-almost all ω ∈ Ω

Primal: E[u(Zx)] ≤ E[u(Y)] for all convex nondecreasing u : R→ R

Inverse:
∫ 1

0 F−1
Zx

(p) dw(p) ≤
∫ 1

0 F−1
Y (p) dw(p) for all convex

nondecreasing w : [0, 1]→ R

Main Results
Utility functions u : R→ R and rank dependent utility functions
w : [0, 1]→ R play the roles of Lagrange multipliers

Expected utility models and rank dependent utility models are
Lagrangian relaxations of the problem
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Implied Utility Function

Lagrangian in Direct Form

L(x, u) = E
[
Zx + u(Zx) − u(Y)

]
u(·) - convex function on R

Theorem
Assume Uniform Dominance Condition (a form of Slater constraint
qualification). If x̂ is an optimal solution of the problem then there exists a
function û ∈ U such that

L(x̂, û)= min
x∈X

L(x, û) (1)

E
[
û(Zx̂)

]
= E

[
û(Y)

]
(2)

Conversely, if for some function û ∈ U an optimal solution x̂ of (1) satisfies
the dominance constraint and (2), then x̂ is optimal
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Implied Rank Utility (Distortion) Function

Lagrangian in Inverse Form

Φ(x,w) =

∫ 1

0
F−1

Zx
(p) d(p + w(p)) −

∫ 1

0
F−1

Y (p) dw(p)

w(·) - convex function on [0, 1]

Theorem
Assume Uniform Dominance Condition (a form of Slater constraint
qualification). If x̂ is an optimal solution of the problem, then there exists a
function ŵ ∈ W such that

Φ(x̂, ŵ) = min
x∈X

Φ(x, ŵ) (3)∫ 1

0
F−1

Zx̂
(p) dŵ(p) =

∫ 1

0
F−1

Y (p) dŵ(p) (4)

If for some ŵ ∈ W an optimal solution x̂ of (3) satisfies the inverse
dominance constraint and (4), then x̂ is optimal
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